Home
Class 12
MATHS
Show that A=|[2,-3], [3 ,4]| satisfies t...

Show that `A=|[2,-3], [3 ,4]|` satisfies the equation `x^2-6x+17=0` . Hence, find `A^(-1)` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

Show that A=[(-8, 5),( 2, 4)] satisfies the equation A^2+4A-42 I=O . Hence, find A^(-1) .

Show that A=[(5, 3),(-1,-2)] satisfies the equation x^2-3x-7=0 . Thus, find A^(-1)

Show that A=[(6, 5),( 7, 6)] satisfies the equation x^2-12 x+1=0 . Thus, find A^(-1)

Show that the matrix, A=[[1, 0,-2],[-2,-1, 2],[ 3, 4, 1]] satisfies the equation, A^3-A^2-3A-I_3=O . Hence, find A^(-1) .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .

Find the roots of the equation 3x^2+6x+3=0

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

Show that one root of the quadratic equation x^(2)+(3-2a)x-6a=0 is -3 . Hence, find its other root.

The discriminant of the quadratic equation 4x^(2) -6x+3=0 is

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If A=|[1,tanx],[-tanx,1]| , show that A^T\ A^(-1)=|[cos2x,-sin2x],[sin...

    Text Solution

    |

  2. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  3. Show that A=|[2,-3], [3 ,4]| satisfies the equation x^2-6x+17=0 . Henc...

    Text Solution

    |

  4. For the matrix A=|[3, 1], [7, 5]| , find x and y so that A^2+x I=y Ado...

    Text Solution

    |

  5. For the matrix A=[[3, 2],[ 1, 1]] , find the numbers a and b such that...

    Text Solution

    |

  6. Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the...

    Text Solution

    |

  7. If A=[[1,-1, 1],[ 2,-1, 0],[ 1, 0, 0]] , show that A^(-1)=A^2 .

    Text Solution

    |

  8. Find a 2xx2 matrix B such that B[(1,-2),( 1, 4)]=[(6, 0),( 0, 6)] .

    Text Solution

    |

  9. Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A...

    Text Solution

    |

  10. Find the matrix X for which [(1,-4) ,(3,-2)]X=[(-16,-6),( 7, 2)] .

    Text Solution

    |

  11. If A=[[0 ,1 ,3],[ 1, 2,x],[2, 3, 1]] and A^(-1)=[[1//2,-4 ,5//2],[-1//...

    Text Solution

    |

  12. If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1...

    Text Solution

    |

  13. If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) ...

    Text Solution

    |

  14. Find the matrix A such that |A|=2 and a d j\ A=[[2, 2, 0],[ 2, 5, 1],[...

    Text Solution

    |

  15. If A is a non-singular matrix, prove that: a d j\ (A) is also no...

    Text Solution

    |

  16. If A is a non-singular matrix, prove that (a d j\ A)^(-1)=(a d j\ A...

    Text Solution

    |

  17. Find the non-singular matrices A , if it is given that a d j\ (A)=[...

    Text Solution

    |

  18. If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j\ A)^(-1) and (a...

    Text Solution

    |

  19. Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric i...

    Text Solution

    |

  20. Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verif...

    Text Solution

    |