Home
Class 12
MATHS
Find the matrix A satisfying the matrix...

Find the matrix `A` satisfying the matrix equation `[(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)]` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

Find the matrix X satisfying the matrix equation: X[[5, 3],[-1,-2]]=[[14, 7],[ 7, 7]] .

Solve the matrix equations: [(x,1)][(1, 0),(-2,-3)][(x,5)]=0

Solve the matrix equations: [2x\ \ 3][(1, 2),(-3, 0)][(x),(8)]=0

Find the matrix X satisfying the equation: [[2, 1 ],[5, 3]]X[[5, 3],[ 3 ,2]]=[[1, 0],[ 0 ,1]] .

Find x ,\ y satisfying the matrix equations: x[2 1]+y[3 5]+[-8-11]=0

Find the matrix X for which: [(3, 2), (7, 5)]X[(-1, 1),(-2, 1)]=[(2,-1),( 0, 4)] .

Solve the matrix equation [x" "1] [{:( 1,0),(-2,-3):}] [{:(x),(5):}] =0

Find the inverse the matrix (if it exists)given in [(1, 2, 3),( 0, 2, 4),( 0, 0, 5)]

Find the inverse the matrix (if it exists)given in [(1,-1, 2),( 0, 2,-3),( 3,-2, 4)]

Show that the matrix A=[2 3 1 2] satisfies the equation A^2-4A+I=0

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If A=[[1,-1, 1],[ 2,-1, 0],[ 1, 0, 0]] , show that A^(-1)=A^2 .

    Text Solution

    |

  2. Find a 2xx2 matrix B such that B[(1,-2),( 1, 4)]=[(6, 0),( 0, 6)] .

    Text Solution

    |

  3. Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A...

    Text Solution

    |

  4. Find the matrix X for which [(1,-4) ,(3,-2)]X=[(-16,-6),( 7, 2)] .

    Text Solution

    |

  5. If A=[[0 ,1 ,3],[ 1, 2,x],[2, 3, 1]] and A^(-1)=[[1//2,-4 ,5//2],[-1//...

    Text Solution

    |

  6. If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1...

    Text Solution

    |

  7. If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) ...

    Text Solution

    |

  8. Find the matrix A such that |A|=2 and a d j\ A=[[2, 2, 0],[ 2, 5, 1],[...

    Text Solution

    |

  9. If A is a non-singular matrix, prove that: a d j\ (A) is also no...

    Text Solution

    |

  10. If A is a non-singular matrix, prove that (a d j\ A)^(-1)=(a d j\ A...

    Text Solution

    |

  11. Find the non-singular matrices A , if it is given that a d j\ (A)=[...

    Text Solution

    |

  12. If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j\ A)^(-1) and (a...

    Text Solution

    |

  13. Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric i...

    Text Solution

    |

  14. Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verif...

    Text Solution

    |

  15. Find the adjoint of the following matrices: [(cosalpha,sinalpha),(si...

    Text Solution

    |

  16. Compute the adjoint of each of the following matrices: [[1, 2, 2],[ ...

    Text Solution

    |

  17. For the matrix A=[[1,-1, 1],[ 2 ,3, 0 ],[18 ,2 ,10]] , show that A(a d...

    Text Solution

    |

  18. If A=[[-4,-3,-3],[ 1, 0 ,1],[ 4 ,4, 3]] , show that a d j\ A=A .

    Text Solution

    |

  19. If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j\ A=3A^T .

    Text Solution

    |

  20. Find A(a d j\ A) for the matrix A=[[1,-2 ,3],[ 0, 2,-1],[-4 ,5, 2]] .

    Text Solution

    |