Home
Class 12
MATHS
Find the matrix X for which [(1,-4) ,(3,...

Find the matrix `X` for which `[(1,-4) ,(3,-2)]X=[(-16,-6),( 7, 2)]` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

Find the matrix X for which [(5,4),(1,1)]xx=[(1,-2),(1,3)]

Find the matrix X for which: [(3, 2), (7, 5)]X[(-1, 1),(-2, 1)]=[(2,-1),( 0, 4)] .

The matrix X for which [[1,-4],[ 3,-2]]X=[[-16-,6],[ 7 ,2]] is a. [[-2, 4],[-3, 1]] b. [[-1/5, 2/5],[-3/(10),1/5]] c. [[-16, 16],[ 7 ,2]] d. [[6, 2],[(11)/2, 2]]

The matrix X for which [1-4 3-2]X=[-16-6 7 2] [-2 4-3 1] (b) [-1/5 2/5(-3)/(10)1/5] [6 2(11)/2 2] (d) [-16-6 7 2]

Without using the concept of inverse of a matrix, find the matrix [x y z u] such that [(5,-7),(-2 ,3)][(x ,y),( z, u)]=[(-16,-6 ),(7, 2)] .

Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)] (ii) A[(1, 2, 3 ),(4, 5 ,6)]=[(-7,-8,-9 ),(2, 4 ,6)]

FInd matrix X, if X+[(2,5),(3,2)]=[(4,0),(-7,6)]

Find the rank of the matrix A = [[2,4,3,-2],[-3,-2,-1,4],[6,-1,7,2]]

Find the values of x for which matrix [(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)] is singular.

Find the matrix X so that X[[1 ,2 ,3], [4, 5 ,6]]=[[-7,-8,-9],[2,4,6]]

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. Find a 2xx2 matrix B such that B[(1,-2),( 1, 4)]=[(6, 0),( 0, 6)] .

    Text Solution

    |

  2. Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A...

    Text Solution

    |

  3. Find the matrix X for which [(1,-4) ,(3,-2)]X=[(-16,-6),( 7, 2)] .

    Text Solution

    |

  4. If A=[[0 ,1 ,3],[ 1, 2,x],[2, 3, 1]] and A^(-1)=[[1//2,-4 ,5//2],[-1//...

    Text Solution

    |

  5. If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1...

    Text Solution

    |

  6. If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) ...

    Text Solution

    |

  7. Find the matrix A such that |A|=2 and a d j\ A=[[2, 2, 0],[ 2, 5, 1],[...

    Text Solution

    |

  8. If A is a non-singular matrix, prove that: a d j\ (A) is also no...

    Text Solution

    |

  9. If A is a non-singular matrix, prove that (a d j\ A)^(-1)=(a d j\ A...

    Text Solution

    |

  10. Find the non-singular matrices A , if it is given that a d j\ (A)=[...

    Text Solution

    |

  11. If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j\ A)^(-1) and (a...

    Text Solution

    |

  12. Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric i...

    Text Solution

    |

  13. Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verif...

    Text Solution

    |

  14. Find the adjoint of the following matrices: [(cosalpha,sinalpha),(si...

    Text Solution

    |

  15. Compute the adjoint of each of the following matrices: [[1, 2, 2],[ ...

    Text Solution

    |

  16. For the matrix A=[[1,-1, 1],[ 2 ,3, 0 ],[18 ,2 ,10]] , show that A(a d...

    Text Solution

    |

  17. If A=[[-4,-3,-3],[ 1, 0 ,1],[ 4 ,4, 3]] , show that a d j\ A=A .

    Text Solution

    |

  18. If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j\ A=3A^T .

    Text Solution

    |

  19. Find A(a d j\ A) for the matrix A=[[1,-2 ,3],[ 0, 2,-1],[-4 ,5, 2]] .

    Text Solution

    |

  20. Find the inverse of the following matrix: |[costheta,sintheta],[-sinth...

    Text Solution

    |