Home
Class 12
MATHS
If matrix A=[(0, 2,y),( z, x, y),(-z, x-...

If matrix `A=[(0, 2,y),( z, x, y),(-z, x-y, z)]` satisfies `A^T=A^(-1)` , find `x ,\ y ,\ zdot`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

If matrix A=[02 y z x y-zx-yz] satisfies AT = A-1, then find the value of x, y, z.

Find the values of x, y, z if the matrix A=[[0, 2y, z],[ x, y,-z],[ x,-y, z]] satisfy the equation A^(prime)A=I .

If the matrix A=[[5 ,2,x], [y, z,-3], [4,t,-7]] is a symmetric matrix, find x ,\ y ,\ z and t .

Find the values of x ,\ \ y\ ,\ z if the matrix A=[0 2y z x y-z x-y z] satisfy the equation A^T\ A=I_3 .

Find the values of x,y,z if the matrix A=[[0,2y,z],[x,y,-z],[x,-y,z]] satisfy the equation A^T A=I_3

If [x-y2x+z2x-y3z+w]=[-1 5 0 13] , find x ,\ y ,\ z ,\ wdot

If [(x-y ,z),(2x-y,omega)]=[(-1 ,4),( 0 ,5)] , find x ,\ y ,\ z ,\ omega .

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If A=[[0 ,1 ,3],[ 1, 2,x],[2, 3, 1]] and A^(-1)=[[1//2,-4 ,5//2],[-1//...

    Text Solution

    |

  2. If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1...

    Text Solution

    |

  3. If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) ...

    Text Solution

    |

  4. Find the matrix A such that |A|=2 and a d j\ A=[[2, 2, 0],[ 2, 5, 1],[...

    Text Solution

    |

  5. If A is a non-singular matrix, prove that: a d j\ (A) is also no...

    Text Solution

    |

  6. If A is a non-singular matrix, prove that (a d j\ A)^(-1)=(a d j\ A...

    Text Solution

    |

  7. Find the non-singular matrices A , if it is given that a d j\ (A)=[...

    Text Solution

    |

  8. If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j\ A)^(-1) and (a...

    Text Solution

    |

  9. Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric i...

    Text Solution

    |

  10. Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verif...

    Text Solution

    |

  11. Find the adjoint of the following matrices: [(cosalpha,sinalpha),(si...

    Text Solution

    |

  12. Compute the adjoint of each of the following matrices: [[1, 2, 2],[ ...

    Text Solution

    |

  13. For the matrix A=[[1,-1, 1],[ 2 ,3, 0 ],[18 ,2 ,10]] , show that A(a d...

    Text Solution

    |

  14. If A=[[-4,-3,-3],[ 1, 0 ,1],[ 4 ,4, 3]] , show that a d j\ A=A .

    Text Solution

    |

  15. If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j\ A=3A^T .

    Text Solution

    |

  16. Find A(a d j\ A) for the matrix A=[[1,-2 ,3],[ 0, 2,-1],[-4 ,5, 2]] .

    Text Solution

    |

  17. Find the inverse of the following matrix: |[costheta,sintheta],[-sinth...

    Text Solution

    |

  18. Find the inverse of [(1, 2, 3),( 2, 3, 1),( 3, 1, 2)].

    Text Solution

    |

  19. Find the inverse of [(1, 2, 5),( 1,-1,-1),( 2 ,3,-1)]

    Text Solution

    |

  20. Find the inverse of [(2,-1, 1),(-1, 2,-1),( 1,-1, 2)]

    Text Solution

    |