Home
Class 12
MATHS
If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] ...

If `A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)]` , find `(a d j\ A)^(-1)` and `(a d j\ A^(-1))` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

If A=[(a , b),( c, d)] , B=[(1 ,0),( 0, 1)] , find a d j\ (A B) .

If A=[(1 ,-3),( 2, 0)] , write a d j\ A .

If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j\ A=3A^T .

If A=[(3, 1) , ( 2 ,-3)] , then find |a d j\ A| .

If a d j\ A=[(2, 3),(4,-1)] and a d j\ B=[(1,-2),(-3, 1)] , find a d j\ A Bdot

If A=|[3, 0,-1], [2, 3 ,0], [0, 4, 1]| , then find |a d j\ (a d j\ A)| .

If A=[[3,-3, 4], [2,-3, 4], [0,-1, 1]] , then a. a d j(a d j A)=A b. |a d j(a d j A)|=1 c. a d j A=I d. none of these

If A= [ [1, 2] , [-1, 1]] , then det (a d j\ A)) is ?

If A is a non-singular matrix, prove that (a d j\ A)^(-1)=(a d j\ A^(-1)) .

Compute the adjoint of the matrix A given by A=[[1, 4, 5], [3, 2, 6], [0 ,1 ,0]] and verify that A(a d j\ A)=|A|I=(a d j\ A)Adot

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If A is a non-singular matrix, prove that (a d j\ A)^(-1)=(a d j\ A...

    Text Solution

    |

  2. Find the non-singular matrices A , if it is given that a d j\ (A)=[...

    Text Solution

    |

  3. If A=[(2,-1, 1),(-1, 2,-1),( 1,-1, 2)] , find (a d j\ A)^(-1) and (a...

    Text Solution

    |

  4. Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric i...

    Text Solution

    |

  5. Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verif...

    Text Solution

    |

  6. Find the adjoint of the following matrices: [(cosalpha,sinalpha),(si...

    Text Solution

    |

  7. Compute the adjoint of each of the following matrices: [[1, 2, 2],[ ...

    Text Solution

    |

  8. For the matrix A=[[1,-1, 1],[ 2 ,3, 0 ],[18 ,2 ,10]] , show that A(a d...

    Text Solution

    |

  9. If A=[[-4,-3,-3],[ 1, 0 ,1],[ 4 ,4, 3]] , show that a d j\ A=A .

    Text Solution

    |

  10. If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j\ A=3A^T .

    Text Solution

    |

  11. Find A(a d j\ A) for the matrix A=[[1,-2 ,3],[ 0, 2,-1],[-4 ,5, 2]] .

    Text Solution

    |

  12. Find the inverse of the following matrix: |[costheta,sintheta],[-sinth...

    Text Solution

    |

  13. Find the inverse of [(1, 2, 3),( 2, 3, 1),( 3, 1, 2)].

    Text Solution

    |

  14. Find the inverse of [(1, 2, 5),( 1,-1,-1),( 2 ,3,-1)]

    Text Solution

    |

  15. Find the inverse of [(2,-1, 1),(-1, 2,-1),( 1,-1, 2)]

    Text Solution

    |

  16. Find the inverse of [(2, 0,-1),( 5, 1, 0),( 0, 1, 3)]

    Text Solution

    |

  17. Find the inverse of [(0 ,1,-1),( 4,-3, 4),( 3,-3, 4)]

    Text Solution

    |

  18. Find the inverse of [(0, 0,-1), (3 ,4 ,5),(-2,-4,-7)]

    Text Solution

    |

  19. Find the inverse of [(1, 0, 0),( 0,cosalpha,sinalpha),(0,sinalpha,-cos...

    Text Solution

    |

  20. Find the inverse following matrix and verify that A^(-1)A=I3 . [(1, ...

    Text Solution

    |