Home
Class 12
MATHS
Solve the matrix equation [[5 ,4] ,[1 ...

Solve the matrix equation `[[5 ,4] ,[1 ,1]]X=[[1,-2],[ 1 ,3]]` , where `X` is a `2xx2` matrix.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

Solve the matrix equations: [(x,1)][(1, 0),(-2,-3)][(x,5)]=0

Find the matrix X for which [(5,4),(1,1)]xx=[(1,-2),(1,3)]

Solve the following matrix equation for x : ,[x1][1 0-2 0]-Odot

Solve the equation: |[3,x],[x,1]|=|[3,2],[4,1]|

Solve the matrix equations: [2x\ \ 3][(1, 2),(-3, 0)][(x),(8)]=0

Solve the matrix equation [x" "1] [{:( 1,0),(-2,-3):}] [{:(x),(5):}] =0

If [[1 ,0],[y,5]]+2[[x,0], [1,-2]]=I , where I is 2xx2 unit matrix. Find x and y .

Find matrix X if X + [[2,5],[3,-1]] =[[3,4], [2,0]]

Solve by matrix method : 2x+y=5 x-y = 1

Find the matrix X satisfying the matrix equation: X[[5, 3],[-1,-2]]=[[14, 7],[ 7, 7]] .

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If A=[3-3 4 2-3 4 0-1 1] , show that A^(-1)=A^3 .

    Text Solution

    |

  2. If A=[-1 2 0-1 1 1 0 1 0] , show that A^2=A^(-1) .

    Text Solution

    |

  3. Solve the matrix equation [[5 ,4] ,[1 ,1]]X=[[1,-2],[ 1 ,3]] , where...

    Text Solution

    |

  4. Find the matrix X satisfying the matrix equation: X[[5, 3],[-1,-2]]=...

    Text Solution

    |

  5. Find the matrix X for which: [(3, 2), (7, 5)]X[(-1, 1),(-2, 1)]=[(2,-...

    Text Solution

    |

  6. Find the matrix X satisfying the equation: [[2, 1 ],[5, 3]]X[[5, 3],...

    Text Solution

    |

  7. If A=[1 2 2 2 1 2 2 2 1] , find A^(-1) and prove that A^2-4A-5I=O .

    Text Solution

    |

  8. If A is a square matrix of order n , prove that |A\ a d j\ A|=|A|^n...

    Text Solution

    |

  9. If A^(-1)=[3-1 1-15 6-5 5-2 2]and B=[1 2-2-1 3 0 0-2 1], find (A B)^(-...

    Text Solution

    |

  10. If A=[[1, -230] ,[-14, -221]] , find (A^ T) .

    Text Solution

    |

  11. Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1...

    Text Solution

    |

  12. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  13. Use elementary column operation C2 -> C2 -2C1 in the matrix equati...

    Text Solution

    |

  14. Apply elementary transformation R2->R2-3R1 in the matrix equation ...

    Text Solution

    |

  15. Using elementary transformations, find the inverse of the matrix[1 3 ...

    Text Solution

    |

  16. Using elementary transformations, find the inverse of the matrix[1 3 ...

    Text Solution

    |

  17. Using elementary row transformation find the inverse of the matrix A=[...

    Text Solution

    |

  18. Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by...

    Text Solution

    |

  19. Find the inverse using elementary row transformations: [7 1 4-3] (i...

    Text Solution

    |

  20. Find the inverse using elementary row transformations: [1 6-3 5] (i...

    Text Solution

    |