Home
Class 12
MATHS
If A=[1 2 2 2 1 2 2 2 1] , find A^(-1) a...

If `A=[1 2 2 2 1 2 2 2 1]` , find `A^(-1)` and prove that `A^2-4A-5I=O` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, 2 ,2 ),(2 ,1 ,2),( 2 ,2, 1)] , then prove that A^2-4A-5I=O .

If A=[1 2 2 2 1 2 2 2 1] , then show that A^2-4A-5I=O ,w h e r eIa n d0 are the unit matrix and the null matrix of order 3, respectively. Use this result to find A^(-1)dot

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

If A A=[3-2 4-2] and I=[1 0 0 1] , find k so that A^2=k A-2I .

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A A=[[3,-2],[ 4,-2]] and I=[[1, 0],[ 0, 1]] , find k so that A^2=k A-2I .

If A=[[4, 2],[-1, 1]] , prove that (A-2I)(A-3I)=O .

If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

If a^2 + (1)/( a^2 ) = 2 , find : (i) a+ (1)/( a)

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. Find the matrix X for which: [(3, 2), (7, 5)]X[(-1, 1),(-2, 1)]=[(2,-...

    Text Solution

    |

  2. Find the matrix X satisfying the equation: [[2, 1 ],[5, 3]]X[[5, 3],...

    Text Solution

    |

  3. If A=[1 2 2 2 1 2 2 2 1] , find A^(-1) and prove that A^2-4A-5I=O .

    Text Solution

    |

  4. If A is a square matrix of order n , prove that |A\ a d j\ A|=|A|^n...

    Text Solution

    |

  5. If A^(-1)=[3-1 1-15 6-5 5-2 2]and B=[1 2-2-1 3 0 0-2 1], find (A B)^(-...

    Text Solution

    |

  6. If A=[[1, -230] ,[-14, -221]] , find (A^ T) .

    Text Solution

    |

  7. Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1...

    Text Solution

    |

  8. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  9. Use elementary column operation C2 -> C2 -2C1 in the matrix equati...

    Text Solution

    |

  10. Apply elementary transformation R2->R2-3R1 in the matrix equation ...

    Text Solution

    |

  11. Using elementary transformations, find the inverse of the matrix[1 3 ...

    Text Solution

    |

  12. Using elementary transformations, find the inverse of the matrix[1 3 ...

    Text Solution

    |

  13. Using elementary row transformation find the inverse of the matrix A=[...

    Text Solution

    |

  14. Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by...

    Text Solution

    |

  15. Find the inverse using elementary row transformations: [7 1 4-3] (i...

    Text Solution

    |

  16. Find the inverse using elementary row transformations: [1 6-3 5] (i...

    Text Solution

    |

  17. Find the inverse using elementary row transformations: [3 10 2 7]

    Text Solution

    |

  18. Find the inverse using elementary row transformations: [0 1 2 1 2 3...

    Text Solution

    |

  19. Find the inverse using elementary row transformations: [2 0-1 5 1 0...

    Text Solution

    |

  20. Find the inverse using elementary row transformations: [2 3 1 2 4 1...

    Text Solution

    |