Home
Class 12
MATHS
Use elementary column operation C2->C2+2...

Use elementary column operation `C_2->C_2+2C_1` in the following matrix equation : `[(2,1),(2, 0)]`=`[(3,1),(2,0)][(1,0),(-1, 1)]`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

On usign elementry column operation C_(2)rArrC_(2)-2C_(1) in the following matrix equation [{:(1,-3),(2,4):}]=[{:(1,01),(0,1):}][{:(3,1),(2,4):}] , we have

Use elementary column operation C2 -> C2 -2C1 in the matrix equation [[4 ,2],[ 3, 3]]=[[1, 2 ],[0, 3]][[2 ,0],[ 1 ,1]]

On using the elementary row operation R_(1) to R_(1)-3R_(2) in the matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}] [{:(2,0),(1,1):}] we get

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

On using row operation R_(1)rArrR_(1)-3R_(2) in the following matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}] we have

Using elementary transformation, find the inverse of the following matrix: ((1,3,-2),(-3,0,-5),(2,5,0))

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

Using elementary transformation find the inverse of the matrix : A=((1, -3,2),(3, 0, 1),(-2, -1, 0))

Using elementary transformations, find the inverse of the matrix : [(2,0,-1),(5, 1, 0),(0, 1, 3)]

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If A=[(2, 3),( 5,-2)], write A^(-1)

    Text Solution

    |

  2. Write A^(-1) for A=[(2, 5) ,( 1 , 3)]

    Text Solution

    |

  3. Use elementary column operation C2->C2+2C1 in the following matrix equ...

    Text Solution

    |

  4. If A is an invertible matrix, then which of the following is not tru...

    Text Solution

    |

  5. If A is an invertible matrix of order 3, then which of the following...

    Text Solution

    |

  6. If A=[(3, 4),( 2,4)] , B=[(-2,-2),( 0,-1)] , then (A+B)^(-1) (a) is a...

    Text Solution

    |

  7. If A=[[a, b],[ c ,d]] , then a d j\ A is (a) [[-d,-b],[-c, a]] (b) [[d...

    Text Solution

    |

  8. If A is a singular matrix, then adj A is a. Singular b. non singular...

    Text Solution

    |

  9. If A, B are two n xx n non-singular matrices, then (1) AB is non-singu...

    Text Solution

    |

  10. If A=[(a , 0) ,(0 ,a)] , then the value of |a d j\ A| is ?

    Text Solution

    |

  11. If A= [ [1, 2] , [-1, 1]] , then det (a d j\ A)) is ?

    Text Solution

    |

  12. If B is a non-singular matrix and A is a square matrix, then det (B^(-...

    Text Solution

    |

  13. For any 2xx2 matrix, if A\ (a d j\ A)=[[10 ,0 ],[0 ,10]] , then |A| is...

    Text Solution

    |

  14. If A^5=O such that A^n != I for 1 <= n <= 4, then (I - A)^-1 is equal ...

    Text Solution

    |

  15. If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists ...

    Text Solution

    |

  16. If for the matrix A ,\ A^3=I , then A^(-1)=(a)A^2 (b) A^3 (c) A (d) no...

    Text Solution

    |

  17. If Aa n dB are two square matrices such that B=-A^(-1)B A ,t h e n(A+B...

    Text Solution

    |

  18. If A=[(2 ,0 ,0),( 0 ,2 ,0),( 0 ,0 ,2)] , then A^5= (a) 5A (b) 10 A (c...

    Text Solution

    |

  19. For non-singular square matrix A ,\ B\ a n d\ C of the same order th...

    Text Solution

    |

  20. The matrix [(5 ,1 ,0), (3 ,-2 ,-4 ), (6 ,-1 ,-2b)] is a singular matri...

    Text Solution

    |