Home
Class 12
MATHS
If A^5=O such that A^n != I for 1 <= n <...

If `A^5=O` such that `A^n != I` for `1 <= n <= 4`, then `(I - A)^-1` is equal to

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

If x_1,x_2,.......,x_n are n values of a variable X such that sum_(i=1)^n (x_i-2)=110 and sum_(i=1)^n(x_i-5) =20 . Find the value of n and the mean.

If (5 + 2 sqrt(6))^(n) = I + f , where I in N, n in N and 0 le f le 1, then I equals

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i) = 20 show the values of n are 5 or 20

If I_n is the area of n sided regular polygon inscribed in a circle of unit radius and O_n be the area of the polygon circumscribing the given circle, prove that I_n=(O_n)/2(1+(sqrt(1-((2I_n)/n)^2))

If the rate of decomposition of N 2 ​ O 5 ​ during a certain time internal is 2.4×10^−4 molL −1 min −1 . N 2 ​ O 5 ​ →2NO 2 ​ + 2 1 ​ O 2 ​ What is the rate of formation of NO 2 in ​ molL −1 min −1 ?

Suppose A is any 3 × 3 non-singular matrix and (A -3I) (A-5I)=0, where I=I_3 and O=O_3 . If alphaA + betaA^(-1) =4I , then alpha +beta is equal to :

I_(n) is the area of n sided refular polygon inscribed in a circle unit radius and O_(n) be the area of the polygon circumscribing the given circle, prove that I_(n)=O_(n)/2(1+sqrt(1-((2I_(n))/n)^(2)))

If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equal to O I b. 2I c. 6I d. I

If (1+i)(1+2i)(1+3i)......(1+n i)=(x+i y) , show that 2. 5. 10...... (1+n^2)=x^2+y^2dot

A_(1),A_(2), …. A_(n) are the vertices of a regular plane polygon with n sides and O ars its centre. Show that sum_(i=1)^(n-1) (vec(OA_(i))xxvec(OA)_(i+1))=(n-1) (vec(OA)_1 xx vec(OA)_(2))

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If B is a non-singular matrix and A is a square matrix, then det (B^(-...

    Text Solution

    |

  2. For any 2xx2 matrix, if A\ (a d j\ A)=[[10 ,0 ],[0 ,10]] , then |A| is...

    Text Solution

    |

  3. If A^5=O such that A^n != I for 1 <= n <= 4, then (I - A)^-1 is equal ...

    Text Solution

    |

  4. If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists ...

    Text Solution

    |

  5. If for the matrix A ,\ A^3=I , then A^(-1)=(a)A^2 (b) A^3 (c) A (d) no...

    Text Solution

    |

  6. If Aa n dB are two square matrices such that B=-A^(-1)B A ,t h e n(A+B...

    Text Solution

    |

  7. If A=[(2 ,0 ,0),( 0 ,2 ,0),( 0 ,0 ,2)] , then A^5= (a) 5A (b) 10 A (c...

    Text Solution

    |

  8. For non-singular square matrix A ,\ B\ a n d\ C of the same order th...

    Text Solution

    |

  9. The matrix [(5 ,1 ,0), (3 ,-2 ,-4 ), (6 ,-1 ,-2b)] is a singular matri...

    Text Solution

    |

  10. If d is the determinant of a square matrix A of order n , then the ...

    Text Solution

    |

  11. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  12. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  13. If A and B are invertible matrices, which of the following statemen...

    Text Solution

    |

  14. If A is a square matrix such that A^2 = I, then A^(-1) is equal to (i...

    Text Solution

    |

  15. Let A=[(1, 2), (3,-5)] and B=[(1, 0), (0, 2)] and X be a matrix such t...

    Text Solution

    |

  16. If A=[ (2 , 3) ,( 5 ,-2 )] , then find |A|

    Text Solution

    |

  17. If A=1/3[(1,2,2),(2,1,-2),(x,2,y)] satisfies A^T A=I , then x+y= (a) ...

    Text Solution

    |

  18. If A=[(1,0,1), (0,0,1),(a,b,2)] , then a I+b A+2A^2 equals (a) A (b) -...

    Text Solution

    |

  19. If [(1,-tantheta),(tantheta,1)][(1,tantheta),(-tantheta,1)]^(-1)=[(a,-...

    Text Solution

    |

  20. If a matrix A is such that 3A^3 +2A^2+5A+I= 0, then A^(-1) is equal to

    Text Solution

    |