Home
Class 12
MATHS
If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is ...

If `f(x)=(2x+3sinx)/(3x+2sinx)` , `x!=0` is continuous at `x=0` , then find `f(0)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    RD SHARMA ENGLISH|Exercise All Questions|149 Videos
  • DEFINITE INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|562 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0 , then A+B+f(0) is

If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) for x!=0 is continuous at x=0 , then A+B+f(0) is

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuous at x=0 then find the value of k

If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0, then f(0) must be equal to

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If f (x) = [{:((ae^(sin x )+be ^(-sinx)-c)/(x ^(2)),,, x ne0),(2, ,, x =0):} is continous at x=0, then:

Prove that f(x) = {sinx/x ; x != 0 and 1 ; x=0 . is continuous at x=0 .

If f(x)=f(x)={(sin(a+1)x+sinx)/(x), ,x<0,c \ at x=0, (sqrt(x+b x^2)-sqrt(x))/(b xsqrt(x)),xgeq0,f(x) is continuous at x=0,t h e n (a). a=-3/2,b=0,c=1/2 (b) a=-3/2,b=1,c=-1/2 (c) a=-3/2,b in R-[0],c=1/2 (d) none of these