Home
Class 12
MATHS
Let f(x)={(1/(|x|), for |x| ge 1),(ax^2+...

Let `f(x)={(1/(|x|), for |x| ge 1),(ax^2+b,for |x| < 1))` . If `f(x)` is continuous and differentiable at any point, then

A

`a=1/2, b=-3/2`

B

`a=-1/2, b=3/2`

C

`a=1,b=-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at the points where the definition of the function changes, specifically at \( x = -1 \) and \( x = 1 \). The function is defined as: \[ f(x) = \begin{cases} \frac{1}{|x|} & \text{for } |x| \geq 1 \\ ax^2 + b & \text{for } |x| < 1 \end{cases} \] ### Step 1: Check Continuity at \( x = 1 \) For \( f(x) \) to be continuous at \( x = 1 \), we need: \[ \lim_{x \to 1^-} f(x) = f(1) \] Calculating \( f(1) \): \[ f(1) = \frac{1}{|1|} = 1 \] Now, calculate \( \lim_{x \to 1^-} f(x) \): \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (ax^2 + b) = a(1)^2 + b = a + b \] Setting these equal for continuity: \[ a + b = 1 \quad \text{(Equation 1)} \] ### Step 2: Check Continuity at \( x = -1 \) For \( f(x) \) to be continuous at \( x = -1 \), we need: \[ \lim_{x \to -1^-} f(x) = f(-1) \] Calculating \( f(-1) \): \[ f(-1) = \frac{1}{|-1|} = 1 \] Now, calculate \( \lim_{x \to -1^+} f(x) \): \[ \lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (ax^2 + b) = a(-1)^2 + b = a + b \] Setting these equal for continuity: \[ a + b = 1 \quad \text{(This is the same as Equation 1)} \] ### Step 3: Check Differentiability at \( x = 1 \) For \( f(x) \) to be differentiable at \( x = 1 \), we need: \[ \lim_{x \to 1^-} f'(x) = \lim_{x \to 1^+} f'(x) \] Calculating the left-hand derivative: \[ f'(x) = \frac{d}{dx}(ax^2 + b) = 2ax \] Thus, \[ \lim_{x \to 1^-} f'(x) = 2a(1) = 2a \] Calculating the right-hand derivative: \[ f'(x) = \frac{d}{dx}\left(\frac{1}{|x|}\right) = -\frac{1}{x^2} \] Thus, \[ \lim_{x \to 1^+} f'(x) = -\frac{1}{(1)^2} = -1 \] Setting these equal for differentiability: \[ 2a = -1 \quad \Rightarrow \quad a = -\frac{1}{2} \quad \text{(Equation 2)} \] ### Step 4: Solve for \( b \) Substituting \( a = -\frac{1}{2} \) into Equation 1: \[ -\frac{1}{2} + b = 1 \quad \Rightarrow \quad b = 1 + \frac{1}{2} = \frac{3}{2} \] ### Final Values Thus, we have: \[ a = -\frac{1}{2}, \quad b = \frac{3}{2} \] ### Conclusion The values of \( a \) and \( b \) that make \( f(x) \) continuous and differentiable at all points are: \[ a = -\frac{1}{2}, \quad b = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RD SHARMA ENGLISH|Exercise All Questions|441 Videos
  • DIFFERENTIAL EQUATION

    RD SHARMA ENGLISH|Exercise All Questions|646 Videos

Similar Questions

Explore conceptually related problems

Consider a function g(x)=f(x-2),AA x in R , where f(x)={{:((1)/(|x|),":",|x|ge1),(ax^(2)+b,":",|x|lt1):} . If g(x) is continuous as well as differentiable for all x, then

Let f(x)={(tan^(-1)x, , |x|ge1),((x^(2)-1)/4, , |x|lt1):} then domain of f'(x) is

Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):}, then domain of f'(x) is:

Let f(x)={((x^3+2x^2-x-2)/(x^3-2x^2-x+2), for |x| lt 1),(x^2+ax+b, for |x| ge 1):} be continuous for all x . Now answer the question:The values of a and b are given by (A) a=-8/3,b=-4/3 (B) a=4/3,b=-8/3 (C) a=-4/3,b=-8/3 (D) a=-4/3,b=8/3

Let f(x)={((x^3+2x^2-x-2)/(x^3-2x^2-x+2), for |x| lt 1),(x^2+ax+b, for |x| ge 1):} be continuous for all x . Now answer the question:Graph of y=f(x) is a combination of (A) a parabola and a circle (B) a parabola and a hyperbola (C) a parabola and a line (D) none of these

Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x) is derivable at x =1 , if

If the function and the derivative of the function f(x) is everywhere continuous and is given by f(x)={:{(bx^(2)+ax+4", for " x ge -1),(ax^(2)+b", for " x lt -1):} , then

f(x)= {{:(x + 1"," if x ge 1 ),(x^(2)+ 1"," if x lt 1):} Check continuity of f(x) at x = 1.

let f(x)={(ax+1, if x le 1),(3, if x=1),(bx^2+1,if x > 1)) if f(x) is continuous at x=1 then value of a-b is (A) 0 (B) 1 (C) 2 (D) 4

Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):} . If f''(1) exists, then the value of (a^(2)+b^(2)+c^(2)) is

RD SHARMA ENGLISH-DIFFERENTIABILITY-All Questions
  1. The function f(x)=|cosx| is (a) everywhere continuous and differe...

    Text Solution

    |

  2. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is (a) continuous on [-1, 1] ...

    Text Solution

    |

  3. If f(x)=a|sinx|+b\ e^(|x|)+c\ |x|^3 and if f(x) is differentiable at x...

    Text Solution

    |

  4. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+. . . . +(x^2)/((1+x^2)^n)...

    Text Solution

    |

  5. If f(x)=|(log)e x| , then (a) f'(1^+)=1 (b) f^'(1^(-))=-1 (c) f'...

    Text Solution

    |

  6. If f(x)=|(log)e|x|| , then (a)f(x) is continuous and differentiable ...

    Text Solution

    |

  7. Let f(x)={(1/(|x|), for |x| ge 1),(ax^2+b,for |x| < 1)) . If f(x) is c...

    Text Solution

    |

  8. The function f(x)=x-[x] , where [⋅] denotes the greatest integer fu...

    Text Solution

    |

  9. Let f(x)={a x^2+1,\ \ \ \ \ x &gt;1 , \ \ \ \ x+1//2,\ \ \ \ \ xlt=1 ...

    Text Solution

    |

  10. Let f(x)=|sinx| . Then, (a) f(x) is everywhere differentiable. ...

    Text Solution

    |

  11. Let f(x)=|cosx| (a) Then, f(x) is everywhere differentiable (b) f(x)...

    Text Solution

    |

  12. The function f(x)=1+|cosx| is (a) continuous no where (b) continuou...

    Text Solution

    |

  13. The f(x)=|cosx| (a)Then, f ( x ) is everywhere differentiable at x=(...

    Text Solution

    |

  14. The function f(x)=(sin(pi[x-pi]))/(4+[x]^2) , where [] denotes the gre...

    Text Solution

    |

  15. Let f(x)=a+b|x|+c|x|^4 , where a ,\ b , and c are real constants. Th...

    Text Solution

    |

  16. If f(x)=|3-x|+[3+x] , where [x] denotes the least integer greater th...

    Text Solution

    |

  17. If f(x)={1/(1+e^(1//x)),\ \ \ \ x!=0 0,\ \ \ \ \ \ \ \ \ \ \ x=0 , the...

    Text Solution

    |

  18. If f(x)={(1-cosx)/(xsinx),x!=0 and 1/2,x=0 then at x=0,f(x) is (a)c...

    Text Solution

    |

  19. The set of points where the function f(x) given by f(x)=|x-3|cosx i...

    Text Solution

    |

  20. Let f(x)={1, x <= -1, |x|, -1 < x < 1, 0, x >=1 . Then, f is (a) c...

    Text Solution

    |