Home
Class 12
MATHS
If y=tan^(-1)x , find (d^2y)/(dx^2) in t...

If `y=tan^(-1)x` , find `(d^2y)/(dx^2)` in terms of `y` alone.

Text Solution

AI Generated Solution

To find the second derivative \(\frac{d^2y}{dx^2}\) in terms of \(y\) alone, we start with the given function: 1. **Given Function**: \[ y = \tan^{-1}(x) \] 2. **First Derivative**: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|406 Videos
  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos

Similar Questions

Explore conceptually related problems

If y=tan^-1x find (d^2y)/(dx^2) in terms of y alone.

"If "y=cos^(-1)x, "find "(d^(2)y)/(dx^(2)) in terms of y alone.

If y=cos^(-1)x , find (d^2y)/(dx^2) in terms of y alone.

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=cos^(-1)x , Find (d^2y)/(dx^2) in terms of y alone.

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

If y=x^x , find (d^2y)/(dx^2) .

If y=(x-x^2) , then find (d^2y)/(dx^2) .