Home
Class 12
MATHS
If y^2=a^2cos^2x+b^2sin^2x then prove th...

If `y^2=a^2cos^2x+b^2sin^2x` then prove that `(d^2y)/(dx^2)+y=(a^2b^2)/(y^3)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|406 Videos
  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos

Similar Questions

Explore conceptually related problems

If y = 5 cos x-3 s in x , prove that (d^2y)/(dx^2)+y=0

If y= A sin x+ B cos x , then prove that (d^2y)/(dx^2)+y=0 .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y^3-y=2x , prove that (d^2y)/(dx^2)=-(24 y)/((3y^2-1)^3) .

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If x=asectheta , y=btantheta , prove that (d^2y)/(dx^2)=-(b^4)/(a^2\ y^3) .

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=x+cotx then prove that sin^2x(d^2y)/(dx^2)-2y+2x=0 .

If x=acostheta , y=bsintheta , show that (d^2y)/(dx^2)=-(b^4)/(a^2y^3) .