Home
Class 12
MATHS
If y=(tan^(-1)x)^2 , then prove that (1+...

If `y=(tan^(-1)x)^2` , then prove that `(1+x^2)^2\ y_2+2x\ (1+x^2)y_1=2` .

Text Solution

AI Generated Solution

To prove that \((1+x^2)^2 y_2 + 2x(1+x^2)y_1 = 2\) for \(y = (\tan^{-1} x)^2\), we will follow these steps: ### Step 1: Differentiate \(y\) to find \(y_1\) Given: \[ y = (\tan^{-1} x)^2 \] Using the chain rule, we differentiate \(y\) with respect to \(x\): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|406 Videos
  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^2 , prove that (1-x^2)y_2-x y_1-2=0 .

If y=(sin^(-1)x)^2 ,prove that (1-x^2)y_2-x y_1-2=0.

If y=e^(tan^(-1)x) , prove that (1+x^2)y_2+(2x-1)y_1=0 .

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2

If y=e^(tan^-1x), prove that (1+x^2)y_2+(2x-1)y_1=0

If y=(cot^(-1)x)^2 , prove that y_2(x^2+1)^2+2x(x^2+1)y_1=2 .

If y=e^"tan"^((-1)"x")), prove that (1+x^2)y_2+(2x-1)y_1=0.

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then prove that (1-x^2)y_2-xy_(1)-4=0.

y=[log(x+sqrt(x^2+1))]^2 then prove that (x^2+1)y_2+x y_1=2

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .