Home
Class 12
MATHS
Evaluate: int1/(sin(x-a)cos(x-b))\ dx...

Evaluate: `int1/(sin(x-a)cos(x-b))\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{1}{\sin(x-a) \cos(x-b)} \, dx \), we can follow these steps: ### Step 1: Multiply by a suitable expression We start by multiplying the numerator and denominator by \( \cos(a-b) \): \[ \int \frac{1}{\sin(x-a) \cos(x-b)} \, dx = \int \frac{\cos(a-b)}{\sin(x-a) \cos(x-b) \cos(a-b)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|531 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(sin(x-a)sin(x-b))\ dx

Evaluate: int1/(sin(x-a)sin(x-b))\ dx

Evaluate: int1/(cos(x-a)cos(x-b))\ dx

Evaluate: int1/(sin(x-a)sin(x-b))dx

Evaluate: int1/(sin(x-a)sin(x-b))dx

Evaluate: int(sin(x-a))/(sin(x-b))dx

Evaluate: (i) int(sin(x-a))/(sin(x-b))\ dx (ii) int(sin(x-alpha))/(sin(x+alpha))\ dx

Evaluate: int1/(1+3sin^2x+8cos^2x)\ dx

Evaluate: int(sin(x+a))/("sin"(x+b))dx

Evaluate: int1/(sin^4x+cos^4x)dx