Home
Class 12
MATHS
Evaluate: int(x+1)/(sqrt(x^2+1))\ dx...

Evaluate: `int(x+1)/(sqrt(x^2+1))\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \(\int \frac{x+1}{\sqrt{x^2+1}} \, dx\), we can break it down into two separate integrals. Here’s the step-by-step solution: ### Step 1: Separate the Integral We can separate the integral into two parts: \[ I = \int \frac{x+1}{\sqrt{x^2+1}} \, dx = \int \frac{x}{\sqrt{x^2+1}} \, dx + \int \frac{1}{\sqrt{x^2+1}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|531 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x+2)/(sqrt(x^2-1))\ dx

Evaluate: int1/((x+1)sqrt(x^2-1))\ dx

Evaluate: int1/((x+1)sqrt(x^2-1))\ dx

Evaluate: int(x+1)/(sqrt(2x-1))\ dx

Evaluate: int(x+1)\ sqrt(x^2-x+1)\ dx

Evaluate: int(x+1)\ sqrt(x^2+x+1)\ dx

Evaluate: int1/(x^(3)sqrt(x^2-1))\ dx

Evaluate: int(1+x^2)/(sqrt(1-x^2))\ dx

Evaluate: int(2x+1)/(sqrt(x^2+2x-1))dx

Evaluate: int1/((x-1)sqrt(x^2+4))\ dx