Home
Class 12
MATHS
"F i n d"int[log(logx)+1/((logx)^2)]dx...

`"F i n d"int[log(logx)+1/((logx)^2)]dx`

Text Solution

AI Generated Solution

To solve the integral \( I = \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx \), we can break it down into two separate integrals: 1. \( I_1 = \int \log(\log x) \, dx \) 2. \( I_2 = \int \frac{1}{(\log x)^2} \, dx \) Thus, we have: \[ I = I_1 + I_2 ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|531 Videos

Similar Questions

Explore conceptually related problems

Find int[log(logx)+1/((logx)^2)]dx

Find int[log(logx)+1/((logx)^2)]dx

int(logx/(1+logx)^2)dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(logx)/((1+logx)^2)dx

Evaluate int(logx)/((1+logx)^(2))dx .

(1) int x*(logx)^(2)dx

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx