Home
Class 12
MATHS
If f(a+b-x)=f(x),\ then prove that\ int...

If `f(a+b-x)=f(x),\ ` then prove that`\ int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA ENGLISH|Exercise All Questions|282 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos

Similar Questions

Explore conceptually related problems

If f(a+b-x)=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

Prove that int_-a^a xf(x^4)dx=0

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

Prove that: int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot

If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dx .