Home
Class 12
MATHS
int0^1(cos^(- 1)x)^2dx...

`int_0^1(cos^(- 1)x)^2dx`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA ENGLISH|Exercise All Questions|282 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos

Similar Questions

Explore conceptually related problems

Prove that for ngt1 . int_0^1(cos^-1x)^ndx=n(pi/2)^(n-1)-n(n-1)int_0^1(cos^-1x)^(n-2)dx

Evaluate the following integral: int_0^1cos^(-1)x\ dx

The value of int_(-a)^a(cos^(- 1)x-sin^(- 1)sqrt(1-x^2))dx is (a>0) there int_0^acos^(- 1)x dx=A) is

int_0^1cot^(- 1)(1-x+x^2)dx

Evaluate the following integral: int_0^1cos^(-1)((1-x^2)/(1+x^2))dx

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

int_0^1 x(1-x)^(5/2) dx

STATEMENT 1: The value of int_0^(2pi)cos^(99)x dx is 0 STATEMENT 2: int_0^(2a)f(x)dx=2int_0^af(x)dx ,if f(2a-x)=f(x)

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx