Home
Class 12
MATHS
If int0^(pi/3)(cosx)/(3+4sinx) dx=k log(...

If `int_0^(pi/3)(cosx)/(3+4sinx) dx=k log((3+2sqrt(3))/3),` then `k` is equal to

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA ENGLISH|Exercise All Questions|282 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_(0)^((14pi)/3) |sinx|dx

Evaluate: int(cosx)/(2+3sinx)dx

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

int1/(cosx+sqrt(3)sinx) dx equals

The value of int_(0)^(4pi)log_(e)|3sinx+3sqrt(3) cos x|dx then the value of I is equal to

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

If int_(pi/4)^((3pi)/4) x/(1+sinx)dx=k(sqrt(2)-1) , then k = (A) 0 (B) pi (C) 2pi (D) none of these

Evaluate: int_0^(pi//2)1/(3+2cosx)dx