Home
Class 12
MATHS
Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4...

Evaluate : `int_0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx`

A

`(pi^(2))/2`

B

`(pi^(2))/4`

C

`(pi^(2))/8`

D

`(pi^(2))/16`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx, \] we can use a symmetry property of definite integrals. Let's proceed step by step. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA ENGLISH|Exercise All Questions|282 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

Evaluate: int_0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx

Evaluate int_0^(pi/2)((sin^4x)/(sin^4x+cos^4x))dx

Evaluate the following integral: int_0^(pi//2)(xsinxcosx)/(sin^4x+cos^4x)dx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

STATEMENT-1 : int_(0)^((pi)/(2))(xsinxcosx)/(sin^(4)x+cos^(4)x)dx=(pi^(2))/(32) and STATEMENT-2 : int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Evaluate: int_0^(pi//2)(sin x)/(1+cos^2x)dx

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx