Home
Class 12
MATHS
If vec a ,\ vec b ,\ vec c be the vec...

If ` vec a ,\ vec b ,\ vec c` be the vectors represented by the sides of a triangle, taken in order, then prove that ` vec a+ vec b+ vec c= vec0dot`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos
  • APPLICATION OF INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|163 Videos

Similar Questions

Explore conceptually related problems

If vec a ,\ vec b ,\ vec c\ represent the sides of a triangle taken in order, then write the value of vec a+ vec b+ vec c

If veca , vec b and vec c represents three sides of a triangle taken in order prove that veca xx vec b = vec b xx vec c = vec c xx vec a

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

If vec a ,\ vec b ,\ vec c are three vectors such that vec adot vec b= vec adot vec c then show that vec a=0\ or ,\ vec b=c\ or\ vec a_|_( vec b- vec c)dot

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

If vec a,vec b,vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a+vec b)+(vec bxx vec c)+(vec b+vec c).(vec c xx vec a) + (vec c +vec a).(vec axx vec b) is equal to

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

RD SHARMA ENGLISH-ALGEBRA OF VECTORS-All Questions
  1. In Fig. A B C D is a regular hexagon, which vectors are: (i) Colline...

    Text Solution

    |

  2. Answer the following as true or flase: (a) vec a and vec a are col...

    Text Solution

    |

  3. If vec a ,\ vec b ,\ vec c be the vectors represented by the sides ...

    Text Solution

    |

  4. If P ,Q and R are three collinear points such that vec P Q= vec a ...

    Text Solution

    |

  5. Give a condition that three vectors vec a , vec b and vec c from ...

    Text Solution

    |

  6. If vec a and vec b are two non-collinear vectors having the same ...

    Text Solution

    |

  7. If vec a is a vector and m is a scalar such that m vec a= vec0 ...

    Text Solution

    |

  8. If vec a , vec b are two vectors, then which of the following state...

    Text Solution

    |

  9. If vec a , vec b are two vectors ,then which of the following state...

    Text Solution

    |

  10. If vec a , vec b are two vectors, then which of the following state...

    Text Solution

    |

  11. A B C D is a quadrilateral. Find the sum the vectors vec B A , ve...

    Text Solution

    |

  12. A B C D E is pentagon, prove that vec A B + vec B C + vec C D +...

    Text Solution

    |

  13. A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec ...

    Text Solution

    |

  14. Prove that the sum of all vectors drawn from the centre of a regular ...

    Text Solution

    |

  15. If P is a point and A B C D is a quadrilateral and vec A P+ vec...

    Text Solution

    |

  16. Five forces vec A B , vec A C , vec A D , vec A E and vec A F act...

    Text Solution

    |

  17. The position vectors of A, B,C and D are vec a , vec b , vec 2a+ vec ...

    Text Solution

    |

  18. Let ABCD be as parallelogram. If vec a ,\ vec b ,\ vec c be the pos...

    Text Solution

    |

  19. Find the position vector of a point R which divides the line joinin...

    Text Solution

    |

  20. Let vec a , vec b , vec c , vec d be the position vectors of the four...

    Text Solution

    |