Home
Class 6
MATHS
The value of (axxb)^2 is | vec a|^2+| ve...

The value of `(axxb)^2` is `| vec a|^2+| vec b|^2-( vec adot vec b)^2` b. `| vec a|^2| vec b|^2-( vec adot vec b)^2` c. `| vec a|^2+| vec b|^2-2( vec adot vec b)^2` d. `| vec a|^2+| vec b|^2- vec adot vec b`

Answer

Step by step text solution for The value of (axxb)^2 is | vec a|^2+| vec b|^2-( vec adot vec b)^2 b. | vec a|^2| vec b|^2-( vec adot vec b)^2 c. | vec a|^2+| vec b|^2-2( vec adot vec b)^2 d. | vec a|^2+| vec b|^2- vec adot vec b by MATHS experts to help you in doubts & scoring excellent marks in Class 6 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO ALGEBRA

    RD SHARMA ENGLISH|Exercise All Questions|65 Videos
  • MENSURATION

    RD SHARMA ENGLISH|Exercise All Questions|106 Videos

Similar Questions

Explore conceptually related problems

For any two vectors vec a and vec b , prove that: | vec a+ vec b|^2=| vec a|^2+| vec b|^2+2 vec adot vec b , | vec a- vec b|^2=| vec a|^2+| vec b|^2-2 vec adot vec b , | vec a+ vec b|^2+| vec a- vec b|^2=2(| vec a|^2+| vec b|^2) and | vec a+ vec b|^2=| vec a- vec b|^2 iff vec a_|_ vec bdot Interpret the result geometrically.

Show that ( vec axx vec b)^2=| vec a|^2| vec b|^2-( vec adot vec b)^2=| [vec a.vec a, vec a.vec b],[ vec a.vec b, vec b.vec b]|

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=5\ a n d\ vec adot vec b=8

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=4

Find | vec a|a n d| vec b|,if( vec a - vec b)dot ( vec a+ vec b) =27 and | vec a|=2| vec b|dot

Find | vec a- vec b|,\ if:| vec a|=3,\ | vec b|=4\ a n d\ vec adot vec b=1

For any two vectors vec a and vec b , prove that (vec a xx vec b )^2= |vec a |^2 |vec b|^2 -(vec a. vec b)^2

If | vec axx vec b|=4,\ vec adot vec b =2,\ t h e n\ | vec a|^2| vec b|^2= 6 b. 2 c. 20 d. 8

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec bdot vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec cdot vec a)/(| vec a|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec cdot vec a)/(| vec a|^2) vec a-( vec bdot vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec cdot vec a)/(| vec c|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec cdot vec a)/(| vec c|^2) vec a=( vec bdot vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)