Home
Class 11
PHYSICS
Let vecC=vecA+vecB...

Let `vecC=vecA+vecB`

A

`|vecC|` is always greater than `|vecA|`

B

It is possible to have `|vecC|lt|vecA| and |vecC|lt|vecB|`

C

C is always equal to A+B

D

C is never equal to A+B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \(\vec{C} = \vec{A} + \vec{B}\), we need to analyze the given options regarding the magnitudes of the vectors involved. Let's go through the steps systematically. ### Step 1: Understanding the Vectors We have: \[ \vec{C} = \vec{A} + \vec{B} \] This means that the vector \(\vec{C}\) is the resultant of the vectors \(\vec{A}\) and \(\vec{B}\). ### Step 2: Analyzing the Magnitudes We need to evaluate the following options regarding the magnitudes: 1. \(|\vec{C}| > |\vec{A}|\) 2. \(|\vec{C}| < |\vec{A}|\) and \(|\vec{C}| < |\vec{B}|\) is possible. 3. \(|\vec{C}| = |\vec{A} + \vec{B}|\) 4. \(|\vec{C}| \neq |\vec{A} + \vec{B}|\) ### Step 3: Testing with Examples Let's consider specific examples to evaluate the options. #### Example 1: Let \(\vec{A} = 3 \hat{i}\) and \(\vec{B} = -\hat{i}\). - Magnitude of \(\vec{A}\): \[ |\vec{A}| = 3 \] - Magnitude of \(\vec{B}\): \[ |\vec{B}| = 1 \] - Now, calculate \(\vec{C}\): \[ \vec{C} = \vec{A} + \vec{B} = 3\hat{i} - \hat{i} = 2\hat{i} \] - Magnitude of \(\vec{C}\): \[ |\vec{C}| = 2 \] From this example: - \(|\vec{C}| = 2 < |\vec{A}| = 3\), hence option 1 is incorrect. - \(|\vec{C}| < |\vec{A}|\) is true, and \(|\vec{C}| < |\vec{B}|\) is not true, so option 2 is partially true but requires more analysis. #### Example 2: Let \(\vec{A} = 3 \hat{i}\) and \(\vec{B} = \hat{j}\). - Magnitude of \(\vec{A}\): \[ |\vec{A}| = 3 \] - Magnitude of \(\vec{B}\): \[ |\vec{B}| = 1 \] - Now, calculate \(\vec{C}\): \[ \vec{C} = \vec{A} + \vec{B} = 3\hat{i} + \hat{j} \] - Magnitude of \(\vec{C}\): \[ |\vec{C}| = \sqrt{3^2 + 1^2} = \sqrt{10} \] - Here, \(|\vec{C}| \neq |\vec{A}| + |\vec{B}|\) since \(3 + 1 = 4\) and \(\sqrt{10} < 4\). ### Step 4: Evaluating Options - **Option 1**: Incorrect, as shown in Example 1. - **Option 2**: Possible, as shown in Example 1 and Example 2. - **Option 3**: Incorrect, as shown in Example 2. - **Option 4**: Incorrect, as shown in Example 2. ### Conclusion The only correct option is: **Option 2**: It is possible to have \(|\vec{C}| < |\vec{A}|\) and \(|\vec{C}| < |\vec{B}|\).
Promotional Banner

Topper's Solved these Questions

  • PHYSICS AND MATHEMATICS

    HC VERMA ENGLISH|Exercise Exercises|34 Videos
  • PHYSICS AND MATHEMATICS

    HC VERMA ENGLISH|Exercise Question for short Answer|14 Videos
  • PHYSICS AND MATHEMATICS

    HC VERMA ENGLISH|Exercise Objective 1|6 Videos
  • NEWTON'S LAWS OF MOTION

    HC VERMA ENGLISH|Exercise Questions for short Answer|17 Videos
  • REST AND MOTION : KINEMATICS

    HC VERMA ENGLISH|Exercise Question for short Answer|13 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.vecc=0 , If the angle between vecb and vecc is (pi)/3 then the volume of the parallelopiped whose three coterminous edges are veca, vecb, vecc is

Let veca, vecb, vecc be three vectors of magntiude 3, 4, 5 respectively, satisfying | [[veca, vecb, vecc]] |=60. If (veca+2vecb+3vecc).((vecaxxvecc)xxvecb+vecb)=lambda then lambda is equal to

Let veca, vecb, vecc be three vectors such that [(veca, vecb, vecc)]=2 . If vecr=l(vecbxxvecc)+m(veccxxveca)+n(vecaxxvecb) be perpendicular to veca+vecb+vecc , then the value of l+m+n is

Let veca,vecb , vecc are three vectors of which every pair is non collinear , and the vectors veca+3vecb and 2vecb+vecc are collinear with vecc are veca respectively. If vecb.vecb=1 , then find |2veca+3vecc| .

Let vecA=(hati+hatj)and,vecB=(2hati-hatj) . The magnitude of a coplanar vector vecC such that vecA*vecC=vecB*vecC=vecA*vecB , is given by :

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then