Home
Class 12
PHYSICS
The minimum deviations suffered by red, ...

The minimum deviations suffered by red, yellow and violet beam passing through an equilateral transparent prism are `38.4^(@), 38.7^(@)` and `39.2^(@)` respectively. Calculate the dispersive power of the medium.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the dispersive power of the medium using the given minimum deviations for red, yellow, and violet light passing through an equilateral prism, we can follow these steps: ### Step 1: Write down the given values - Minimum deviation for red light, \( \delta_R = 38.4^\circ \) - Minimum deviation for yellow light, \( \delta_Y = 38.7^\circ \) - Minimum deviation for violet light, \( \delta_V = 39.2^\circ \) - Angle of the prism, \( A = 60^\circ \) (for an equilateral prism) ### Step 2: Use the formula for refractive index The formula for the refractive index \( \mu \) in terms of the minimum deviation \( \delta \) is given by: \[ \mu = \frac{\sin\left(\frac{A + \delta}{2}\right)}{\sin\left(\frac{A}{2}\right)} \] Since \( A = 60^\circ \), we have \( \frac{A}{2} = 30^\circ \). ### Step 3: Calculate \( \mu_R \) for red light Substituting \( \delta_R \) into the formula: \[ \mu_R = \frac{\sin\left(\frac{60^\circ + 38.4^\circ}{2}\right)}{\sin(30^\circ)} \] Calculating the angle: \[ \frac{60^\circ + 38.4^\circ}{2} = \frac{98.4^\circ}{2} = 49.2^\circ \] Now substituting into the equation: \[ \mu_R = \frac{\sin(49.2^\circ)}{\sin(30^\circ)} = \frac{\sin(49.2^\circ)}{0.5} \] Calculating \( \sin(49.2^\circ) \): \[ \mu_R \approx \frac{0.7547}{0.5} \approx 1.5094 \] ### Step 4: Calculate \( \mu_Y \) for yellow light Using \( \delta_Y \): \[ \mu_Y = \frac{\sin\left(\frac{60^\circ + 38.7^\circ}{2}\right)}{\sin(30^\circ)} \] Calculating the angle: \[ \frac{60^\circ + 38.7^\circ}{2} = \frac{98.7^\circ}{2} = 49.35^\circ \] Now substituting into the equation: \[ \mu_Y = \frac{\sin(49.35^\circ)}{0.5} \] Calculating \( \sin(49.35^\circ) \): \[ \mu_Y \approx \frac{0.7565}{0.5} \approx 1.5130 \] ### Step 5: Calculate \( \mu_V \) for violet light Using \( \delta_V \): \[ \mu_V = \frac{\sin\left(\frac{60^\circ + 39.2^\circ}{2}\right)}{\sin(30^\circ)} \] Calculating the angle: \[ \frac{60^\circ + 39.2^\circ}{2} = \frac{99.2^\circ}{2} = 49.6^\circ \] Now substituting into the equation: \[ \mu_V = \frac{\sin(49.6^\circ)}{0.5} \] Calculating \( \sin(49.6^\circ) \): \[ \mu_V \approx \frac{0.7584}{0.5} \approx 1.5168 \] ### Step 6: Calculate the dispersive power The dispersive power \( \omega \) is given by: \[ \omega = \frac{\mu_V - \mu_R}{\mu_Y - 1} \] Substituting the values: \[ \omega = \frac{1.5168 - 1.5094}{1.5130 - 1} \] Calculating the numerator and denominator: \[ \omega = \frac{0.0074}{0.5130} \approx 0.0144 \] ### Final Answer The dispersive power of the medium is approximately \( 0.0144 \). ---

To calculate the dispersive power of the medium using the given minimum deviations for red, yellow, and violet light passing through an equilateral prism, we can follow these steps: ### Step 1: Write down the given values - Minimum deviation for red light, \( \delta_R = 38.4^\circ \) - Minimum deviation for yellow light, \( \delta_Y = 38.7^\circ \) - Minimum deviation for violet light, \( \delta_V = 39.2^\circ \) - Angle of the prism, \( A = 60^\circ \) (for an equilateral prism) ...
Promotional Banner

Topper's Solved these Questions

  • DISPERSION AND SPECTRA

    HC VERMA ENGLISH|Exercise Question for short Answer|6 Videos
  • DISPERSION AND SPECTRA

    HC VERMA ENGLISH|Exercise Objective -2|5 Videos
  • CAPACITORS

    HC VERMA ENGLISH|Exercise short answer|7 Videos
  • ELECTRIC CURRENT IN CONDUCTORS

    HC VERMA ENGLISH|Exercise questions for short answer|17 Videos