Home
Class 12
PHYSICS
Magnetic scalar potential is defined as ...

Magnetic scalar potential is defined as
`U(vec r_2) - U vec (r_1) = - int_vec(r_1) ^vec(r_2) vecB.vec(dl)`
Apply this equation to a closed curve enclosing a long straight wire. The RHS of the above equation is then `mu_0 i` by Ampere's law. We see that `U vec r_2) != U(vec r_1)` even when `vec r_2` `= vec r_1`. Can we have a magnetic scalar potential in this case.?

Promotional Banner

Topper's Solved these Questions

  • PERMANENT MAGNETS

    HC VERMA ENGLISH|Exercise Exercise|25 Videos
  • OPTICAL INSTRUMENTS

    HC VERMA ENGLISH|Exercise Question for short Answer|12 Videos
  • PHOTO ELECTRIC EFFECT AND WAVE PARTICLE DUALITY

    HC VERMA ENGLISH|Exercise question for short answer|13 Videos

Similar Questions

Explore conceptually related problems

The scalars la n dm such that l vec a+m vec b= vec c ,w h e r e vec a , vec ba n d vec c are given vectors, are equal to

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

For any vector vec r , prove that vec r=( vec r . hat i) hat i+( vec r . hat j) hat j+( vec r . hat k) hat kdot

If vec axx vec b= vec bxx vec c!=0,\ then show that vec a+ vec c=m vec b ,\ w h e r e\ m is any scalar.

Write the formula for the shortest distance between the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\

If vec a and vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec b .

If vec r. hat i= vec r.hat j= vec r.hat ka n d| vec r|=3, then find the vector vec rdot

Find the equation of a line : passing through the point vec c , parallel to the plane vec r *vec n = p and intersecting the line vec r =vec a + t vec b .

If a particle is moving as vec(r) = ( vec(i) +2 vec(j))cosomega _(0) t then,motion of the particleis

Write the condition for the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\ to be intersecting.