Home
Class 12
PHYSICS
Find the first excitation potential of H...

Find the first excitation potential of `He^(+)` ion (a)Find the ionization potential of `Li^(++)` ion

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the first excitation potential of the `He^(+)` ion and the ionization potential of the `Li^(++)` ion. ### Step 1: Find the first excitation potential of `He^(+)` ion 1. **Understand the formula for potential energy of hydrogen-like atoms**: The potential energy \( V \) of a hydrogen-like atom in the \( n \)th state is given by: \[ V = -\frac{13.6 \, Z^2}{n^2} \text{ eV} \] where \( Z \) is the atomic number. 2. **Identify the transition for excitation**: For the first excitation of `He^(+)`, the transition is from \( n = 1 \) to \( n = 2 \). 3. **Calculate the potential energy for \( n = 1 \)**: \[ V_1 = -\frac{13.6 \times 2^2}{1^2} = -\frac{13.6 \times 4}{1} = -54.4 \text{ eV} \] 4. **Calculate the potential energy for \( n = 2 \)**: \[ V_2 = -\frac{13.6 \times 2^2}{2^2} = -\frac{13.6 \times 4}{4} = -13.6 \text{ eV} \] 5. **Find the first excitation potential**: The first excitation potential is the difference in potential energy between these two states: \[ \text{Excitation Potential} = V_2 - V_1 = -13.6 - (-54.4) = 40.8 \text{ eV} \] ### Step 2: Find the ionization potential of `Li^(++)` ion 1. **Use the same formula for ionization potential**: The ionization potential for hydrogen-like atoms is also given by: \[ \text{Ionization Potential} = -V_1 = \frac{13.6 \, Z^2}{1^2} \] 2. **Identify \( Z \) for `Li^(++)`**: For `Li^(++)`, \( Z = 3 \). 3. **Calculate the ionization potential**: \[ \text{Ionization Potential} = 13.6 \times 3^2 = 13.6 \times 9 = 122.4 \text{ eV} \] ### Final Answers: - The first excitation potential of `He^(+)` is **40.8 eV**. - The ionization potential of `Li^(++)` is **122.4 eV**. ---

To solve the given problem, we need to find the first excitation potential of the `He^(+)` ion and the ionization potential of the `Li^(++)` ion. ### Step 1: Find the first excitation potential of `He^(+)` ion 1. **Understand the formula for potential energy of hydrogen-like atoms**: The potential energy \( V \) of a hydrogen-like atom in the \( n \)th state is given by: \[ V = -\frac{13.6 \, Z^2}{n^2} \text{ eV} ...
Promotional Banner

Topper's Solved these Questions

  • BOHR'S MODEL AND PHYSICS OF THE ATOM

    HC VERMA ENGLISH|Exercise Short Answer|10 Videos
  • BOHR'S MODEL AND PHYSICS OF THE ATOM

    HC VERMA ENGLISH|Exercise Obejective - II|5 Videos
  • ALTERNATING CURRENT

    HC VERMA ENGLISH|Exercise Short answer|14 Videos
  • CAPACITORS

    HC VERMA ENGLISH|Exercise short answer|7 Videos

Similar Questions

Explore conceptually related problems

First ionization potential of Be and B will be :

If the ionisation potential for hydrogen atom is 13.6 eV, then the ionisation potential for He^(+) ion should be

The energy level excitation potential of a hydrogen -like atom is shown in Figure a Find the value of Z b If initially the atom is in the ground state ,then (i) determine its excitation potential, and m (ii) determine its ionization potential. c Can it absorbe a photom of 42 eV ? d Can it absorbe a photom of 56 eV ? e Calculate the radius of its first Bohr orbit. f Calculate the kinectic and potential energy of an electron in the first orbit.

Define the following term - Ionization potential

The first ionization potential (eV) of N and P respectively are

Which has maximum first ionization potential?

Ionization energy of He^(+) ion at minimum energy position is

If first excitation potential of a hydrogen-like atom is V electron volt, then the ionization energy of this atom will be:

The ionisation potentials of Li and K are 5.4 and 4.3 eV respectively. The ionization potential of Na will be:

The second ionization potential of elements is invariable higher than first ionization potential because:

HC VERMA ENGLISH-BOHR'S MODEL AND PHYSICS OF THE ATOM-Exercises
  1. Find the radius and energy of a He^(++)ion in the states (a) n = 1 , (...

    Text Solution

    |

  2. A hydrogen atom emits ultraviolet of wavelength 102.5 nm what are the ...

    Text Solution

    |

  3. Find the first excitation potential of He^(+) ion (a)Find the ionizati...

    Text Solution

    |

  4. A group of hydrogen atom are prepered in n = 4 states list the wavelen...

    Text Solution

    |

  5. A positive ion having just one electron ejects it if a photon of wavel...

    Text Solution

    |

  6. Find the maximum coulomb force can act on the electron due to the nucl...

    Text Solution

    |

  7. A hydrogen atom in a having a binding of 0.85eVmakes transition to a s...

    Text Solution

    |

  8. Whenever a photon is emitted by hydrogen in balmer series it is follow...

    Text Solution

    |

  9. A hydrogen atom in state n = 6 makes two successive transition and rea...

    Text Solution

    |

  10. What is the energy of a hydrogen atom in the first excited state if th...

    Text Solution

    |

  11. A hot gas emites radition of wavelength 46.0nm ,82.8nm and 103.5nm on...

    Text Solution

    |

  12. A gas of hydrogen like ions is prepared in a particular excited state ...

    Text Solution

    |

  13. Find the maximum angular speed of the electron of a hydrogen atoms in ...

    Text Solution

    |

  14. A spectroscopic instrument can resolve two nearly wavelength lambda an...

    Text Solution

    |

  15. Suppose in certine condition only those transition are allowed to hydr...

    Text Solution

    |

  16. According to maxwell's theiory of electrodnamics, an electron going in...

    Text Solution

    |

  17. The avrage kinetic energy of molecules in a gas at temperature T is 1....

    Text Solution

    |

  18. Find the temperature at which the everage thermal kinetic energy is eq...

    Text Solution

    |

  19. Avarage lifetime of a hydrogen atom excited to n =2 state 10^(-6)s fin...

    Text Solution

    |

  20. calculate the magnetic dipolemoment corresponding to the motion of the...

    Text Solution

    |