To solve the problem, we will follow these steps:
### Step 1: Calculate the mass of `Fe2O3` in the sample
Given that the sample weighs 0.8 g and contains 50% `Fe2O3`:
\[
\text{Mass of } Fe_2O_3 = 0.8 \, \text{g} \times 0.50 = 0.4 \, \text{g}
\]
### Step 2: Calculate the moles of `Fe2O3`
The molar mass of `Fe2O3` is approximately 160 g/mol. We can calculate the moles of `Fe2O3` using the formula:
\[
\text{Moles of } Fe_2O_3 = \frac{\text{mass}}{\text{molar mass}} = \frac{0.4 \, \text{g}}{160 \, \text{g/mol}} = 2.5 \times 10^{-3} \, \text{moles}
\]
### Step 3: Calculate the moles of `Fe3+`
Since each mole of `Fe2O3` produces 2 moles of `Fe3+`, we calculate:
\[
\text{Moles of } Fe^{3+} = 2 \times \text{Moles of } Fe_2O_3 = 2 \times 2.5 \times 10^{-3} = 5.0 \times 10^{-3} \, \text{moles}
\]
### Step 4: Calculate the molarity of the `NH3` solution
The `NH3` solution has a density of 0.986 g/mL and is 2.5% by mass. First, we find the mass of `NH3` in 1 L of solution:
\[
\text{Mass of solution} = 0.986 \, \text{g/mL} \times 1000 \, \text{mL} = 986 \, \text{g}
\]
\[
\text{Mass of } NH_3 = 0.025 \times 986 \, \text{g} = 24.65 \, \text{g}
\]
The molar mass of `NH3` is approximately 17 g/mol, so:
\[
\text{Moles of } NH_3 = \frac{24.65 \, \text{g}}{17 \, \text{g/mol}} \approx 1.45 \, \text{moles}
\]
Thus, the molarity of the `NH3` solution is:
\[
\text{Molarity} = \frac{\text{moles}}{\text{volume in L}} = \frac{1.45 \, \text{moles}}{1 \, \text{L}} = 1.45 \, \text{M}
\]
### Step 5: Calculate the number of equivalents of `Fe3+`
The valency factor for `Fe3+` is 3, so:
\[
\text{Number of equivalents of } Fe^{3+} = \text{moles of } Fe^{3+} \times \text{valency factor} = 5.0 \times 10^{-3} \, \text{moles} \times 3 = 1.5 \times 10^{-2} \, \text{equivalents}
\]
### Step 6: Calculate the volume of `NH3` solution required
Using the formula for equivalents:
\[
\text{Number of equivalents} = \text{Molarity} \times \text{Volume (L)}
\]
We can rearrange this to find the volume:
\[
\text{Volume (L)} = \frac{\text{Number of equivalents}}{\text{Molarity}} = \frac{1.5 \times 10^{-2}}{1.45} \approx 0.01034 \, \text{L}
\]
Converting to milliliters:
\[
\text{Volume (mL)} = 0.01034 \, \text{L} \times 1000 \, \text{mL/L} = 10.34 \, \text{mL}
\]
### Final Answer
The volume of `NH3` solution required is approximately **10.34 mL**.
---