To determine the type of cubic crystal that KBr belongs to, we will use the formula for the density of a unit cell:
\[
\rho = \frac{Z \cdot M}{N_A \cdot a^3}
\]
Where:
- \(\rho\) = density of the substance
- \(Z\) = effective number of atoms (or ions) per unit cell
- \(M\) = molar mass of the substance
- \(N_A\) = Avogadro's number
- \(a\) = edge length of the unit cell
### Step 1: Identify the given values
- Density of KBr, \(\rho = 2.75 \, \text{g/cm}^3\)
- Edge length of the unit cell, \(a = 645 \, \text{pm} = 645 \times 10^{-10} \, \text{cm}\)
- Molar mass of KBr, \(M = 119 \, \text{g/mol}\)
- Avogadro's number, \(N_A = 6.022 \times 10^{23} \, \text{mol}^{-1}\)
### Step 2: Convert the edge length to centimeters
\[
a = 645 \, \text{pm} = 645 \times 10^{-12} \, \text{m} = 645 \times 10^{-10} \, \text{cm}
\]
### Step 3: Substitute the values into the density formula to solve for \(Z\)
Rearranging the density formula to solve for \(Z\):
\[
Z = \frac{\rho \cdot N_A \cdot a^3}{M}
\]
Now substituting the values:
\[
Z = \frac{2.75 \, \text{g/cm}^3 \cdot 6.022 \times 10^{23} \, \text{mol}^{-1} \cdot (645 \times 10^{-10} \, \text{cm})^3}{119 \, \text{g/mol}}
\]
### Step 4: Calculate \(a^3\)
\[
a^3 = (645 \times 10^{-10} \, \text{cm})^3 = 2.695 \times 10^{-28} \, \text{cm}^3
\]
### Step 5: Substitute \(a^3\) back into the equation for \(Z\)
\[
Z = \frac{2.75 \cdot 6.022 \times 10^{23} \cdot 2.695 \times 10^{-28}}{119}
\]
### Step 6: Perform the calculation
Calculating the numerator:
\[
2.75 \cdot 6.022 \times 10^{23} \cdot 2.695 \times 10^{-28} \approx 4.42 \times 10^{-4}
\]
Now dividing by \(119\):
\[
Z \approx \frac{4.42 \times 10^{-4}}{119} \approx 3.71 \approx 4
\]
### Step 7: Determine the type of cubic crystal
Since \(Z \approx 4\), KBr has an effective number of atoms per unit cell equal to 4. This corresponds to a face-centered cubic (FCC) structure, where there are 4 atoms per unit cell (1 from each of the 8 corners and 3 from the 6 faces).
### Conclusion
KBr belongs to the face-centered cubic (FCC) type of cubic crystal.
---