Home
Class 11
CHEMISTRY
Lithium has a bcc structure .Its density...

Lithium has a bcc structure .Its density is `530 kg m^(-3)` and its atomic mass is `6.94 g mol^(-1)` .Calculate the edge length of a unit cell of lithium metal `(N_(A) = 6.02 xx 10^(23) mol^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the edge length of the unit cell of lithium with a body-centered cubic (BCC) structure, we can follow these steps: ### Step 1: Understand the BCC Structure In a BCC unit cell, there are: - 8 corner atoms, each contributing \( \frac{1}{8} \) of an atom to the unit cell. - 1 atom at the body center contributing 1 full atom. **Total number of atoms (Z) per unit cell:** \[ Z = 8 \times \frac{1}{8} + 1 = 2 \] ### Step 2: Use the Density Formula The density (\( \rho \)) of a substance is given by the formula: \[ \rho = \frac{\text{mass of unit cell}}{\text{volume of unit cell}} \] ### Step 3: Calculate the Mass of the Unit Cell The mass of the unit cell can be calculated using the atomic mass and the number of atoms per unit cell: - Given atomic mass of lithium = \( 6.94 \, \text{g/mol} \) - Convert this to kg: \( 6.94 \, \text{g/mol} = 6.94 \times 10^{-3} \, \text{kg/mol} \) The mass of the unit cell can be calculated as: \[ \text{Mass of unit cell} = Z \times \frac{\text{atomic mass}}{N_A} \] Where \( N_A = 6.02 \times 10^{23} \, \text{mol}^{-1} \). Substituting the values: \[ \text{Mass of unit cell} = 2 \times \frac{6.94 \times 10^{-3}}{6.02 \times 10^{23}} \, \text{kg} \] ### Step 4: Calculate the Volume of the Unit Cell The volume of the unit cell for a cubic structure is given by: \[ \text{Volume} = a^3 \] Where \( a \) is the edge length of the unit cell. ### Step 5: Substitute into the Density Formula Now we can substitute the mass and volume into the density formula: \[ \rho = \frac{2 \times \frac{6.94 \times 10^{-3}}{6.02 \times 10^{23}}}{a^3} \] Rearranging gives: \[ a^3 = \frac{2 \times \frac{6.94 \times 10^{-3}}{6.02 \times 10^{23}}}{\rho} \] ### Step 6: Substitute the Density Value Given density \( \rho = 530 \, \text{kg/m}^3 \): \[ a^3 = \frac{2 \times \frac{6.94 \times 10^{-3}}{6.02 \times 10^{23}}}{530} \] ### Step 7: Calculate \( a^3 \) Calculating this step-by-step: 1. Calculate the numerator: \[ 2 \times \frac{6.94 \times 10^{-3}}{6.02 \times 10^{23}} = \frac{13.88 \times 10^{-3}}{6.02 \times 10^{23}} = 2.303 \times 10^{-26} \, \text{kg} \] 2. Now substitute into the equation: \[ a^3 = \frac{2.303 \times 10^{-26}}{530} = 4.345 \times 10^{-29} \, \text{m}^3 \] ### Step 8: Calculate the Edge Length \( a \) Taking the cubic root: \[ a = (4.345 \times 10^{-29})^{1/3} \approx 3.52 \times 10^{-10} \, \text{m} \] Converting to picometers: \[ a \approx 352 \, \text{pm} \] ### Final Answer The edge length of the unit cell of lithium metal is approximately **352 picometers**. ---
Promotional Banner

Topper's Solved these Questions

  • SOLID STATE

    NARENDRA AWASTHI ENGLISH|Exercise Assertion - Reason type Question|11 Videos
  • IONIC EEQUILIBRIUM

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|1 Videos
  • STOICHIOMETRY

    NARENDRA AWASTHI ENGLISH|Exercise Match the Colum-II|6 Videos

Similar Questions

Explore conceptually related problems

Lithium has a bcc structure .its density is 530Kgm^(-1) and its atomic mass is 6.94 g mol^(-1) . Calculate the edge length of a unit cell of Lithium metal. (N_(A)=6.02xx10^(23)mol^(-1))

Lithium metal has a body centred cubic structure. Its density is 0.53g cm^(-3) and its molar mass is 6.94g mol^(-1) . Calculate the volume of a unit cell of lithium metal.

The number of atoms in 0.1 mole of a triatomic gas is (N_(A) = 6.02 xx 10^(23) "mol"^(-1))

The number of atoms in 0.1 mol of a tetraatomic gas is ( N_(A) = 6.02 xx 10^(23) mol^(-1) )

A compound AB has a cubic structure and molecular mass 99. Its density is 3*4 g cm^(-3) . What is the length of the edge of the unit cell?

An element occurs in body centered cubic structure. Its density is 8.0 g//cm^(3) . If the cell edge is 250 pm, calculate the atomic mass of an atom of this element. (N_(A)=6.023xx10^(23))

An element 'X' (At. Mass = 40 g mol^(-1) ) having f.c.c structure has unit cell edge length of 400 pm . Calculate the density of 'X' and the number of unit cells in 4 g of 'X' . (N_(A) = 6.022 xx 10^(23) mol^(-1)) .

Niobium crystallizes in body centred cubic structure. If its density is 8.55 g cm^(-3) , calculate the atomic radius of niobium. (Atomic mass of Nb = 93u , N_A = 6.02 xx 10^(23) mol^(-1) )

An element with density 11.2 g cm^(-3) forms a f. c. c. lattice with edge length of 4xx10^(-8) cm. Calculate the atomic mass of the element. (Given : N_(A)= 6.022xx10^(23) mol^(-1)

A body centred cubic element of density, 10.3 g cm^(-3) has a cell edge of 314 pm. Calculate the atomic mass of the element. ( N_A = 6.023 xx 10^(23) mol^(-1) )