Home
Class 11
CHEMISTRY
Which of the following expressions repre...

Which of the following expressions represents the spectrum of Balmer series (If n is the principal quantum number of higher energy level) in Hydrogen atom ?
(a)`overset-v=(R(n-1)(n+1))/n^(2)`
(b)`overset-v=(R(n-2)(n+2))/(4n^(2))`
(c)`overset-v=(R(n-2)(n+2))/(n^(2))`
(d)`overset-v=(R(n-1)(n+1))/(4n^(2))`

A

`overset-v=(R(n-1)(n+1))/n^(2)`

B

`overset-v=(R(n-2)(n+2))/(4n^(2))`

C

`overset-v=(R(n-2)(n+2))/(n^(2))`

D

`overset-v=(R(n-1)(n+1))/(4n^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of identifying the correct expression that represents the spectrum of the Balmer series in the hydrogen atom, we will follow these steps: ### Step 1: Understand the Balmer Series The Balmer series corresponds to the transitions of electrons from higher energy levels (n ≥ 3) to the second energy level (n = 2) in a hydrogen atom. ### Step 2: Use the Rydberg Formula The Rydberg formula for the wave number (ν̅) of spectral lines in hydrogen is given by: \[ \overset{v}{=}\ R \cdot Z^2 \left( \frac{1}{n_l^2} - \frac{1}{n_h^2} \right) \] where: - \( R \) is the Rydberg constant, - \( Z \) is the atomic number (for hydrogen, \( Z = 1 \)), - \( n_l \) is the principal quantum number of the lower energy level (for Balmer series, \( n_l = 2 \)), - \( n_h \) is the principal quantum number of the higher energy level (can be 3, 4, 5, ...). ### Step 3: Substitute Values into the Rydberg Formula For the Balmer series: - Set \( n_l = 2 \) - Let \( n_h = n \) (where \( n \) is the principal quantum number of the higher energy level) Substituting these values into the Rydberg formula gives: \[ \overset{v}{=}\ R \cdot 1^2 \left( \frac{1}{2^2} - \frac{1}{n^2} \right) \] This simplifies to: \[ \overset{v}{=}\ R \left( \frac{1}{4} - \frac{1}{n^2} \right) \] ### Step 4: Simplify the Expression To combine the terms, we can find a common denominator: \[ \overset{v}{=}\ R \left( \frac{n^2 - 4}{4n^2} \right) \] This can be factored as: \[ \overset{v}{=}\ \frac{R(n-2)(n+2)}{4n^2} \] ### Step 5: Identify the Correct Option Now we can compare our derived expression with the given options: - (a) \(\overset{v}{=}\frac{R(n-1)(n+1)}{n^2}\) - (b) \(\overset{v}{=}\frac{R(n-2)(n+2)}{4n^2}\) - (c) \(\overset{v}{=}\frac{R(n-2)(n+2)}{n^2}\) - (d) \(\overset{v}{=}\frac{R(n-1)(n+1)}{4n^2}\) The expression we derived is: \[ \overset{v}{=}\frac{R(n-2)(n+2)}{4n^2} \] Thus, the correct answer is **(b)**.
Promotional Banner

Topper's Solved these Questions

  • ATOMIC STUCTURE

    NARENDRA AWASTHI ENGLISH|Exercise level 2|30 Videos
  • ATOMIC STUCTURE

    NARENDRA AWASTHI ENGLISH|Exercise Level 3 (Passage 1)|3 Videos
  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI ENGLISH|Exercise Match the column|1 Videos

Similar Questions

Explore conceptually related problems

If n and l are respectively the principal and azimuthal quantum numbers , then the expression for calculating the total number of electrons in any energy level is : (a) underset(l=0)overset(l=n)sum2(2l+1) (b) underset(l=1)overset(l=n)sum2(2l+1) (c) underset(l=0)overset(l=n)sum2(2l+1) (d) underset(l=0)overset(l=n-1)sum2(2l+1)

Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))

If n is a positive integer, prove that underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

Prove that: (i) (.^(n)P_(r))/(.^(n)P_(r-2)) = (n-r+1) (n-r+2)

The correct stability order of the following resonance structure is : (I) H_(2)C= overset( +)(N) =overset( -)(N) (II) H_(2)overset( +)(C )-N = overset( -)(N) (III) H_(2)overset( -)(C ) - overset( +)(N) = N (IV) H_(2)overset( - ) (C ) -N = overset( +)(N )

If tanx=ntany ,n in R^+, then the maximum value of sec^2(x-y) is equal to (a) ((n+1)^2)/(2n) (b) ((n+1)^2)/n (c) ((n+1)^2)/2 (d) ((n+1)^2)/(4n)

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then