Home
Class 11
CHEMISTRY
Calculate the value of A. A=(E(1.2))/(...

Calculate the value of A.
`A=(E_(1.2))/(2E_(2,1))` where `E_(nz)`= Emergy of electron in `n^(th)` orbit, `Z=` atomic number of hydrogen like species.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The total energy (E) of the electron is an orbit of radius r in hydrogen atom is

The ionisation energy of electron (E) is second orbit of hydrogen atom is

If the potential energy of the electron in the first allowed orbit in hydrogen atom is E : its

The angular speed of the electron in the n^(th) Bohr orbit of the hydrogen atom is proportional to

The figure shows a graph between 1n |(A_(n))/(A_(1))| and 1n|n| , where A_(n) is the area enclosed by the n^(th) orbit in a hydrogen like atom. The correct curve is

The figure shows a graph between 1n |(A_(n))/(A_(1))| and 1n|n| , where A_(n) is the area enclosed by the n^(th) orbit in a hydrogen like atom. The correct curve is

In the Bohr's model , for unielectronic species following symbols are used r_(n,z)to Radius of n^"th" orbit with atomic number "z" U_(n,z)to Potential energy of electron in n^"th" orbit with atomic number "z" K_(n,z)to Kinetic energy of electron in n^"th" orbit with atomic number "z" V_(n,z)to Velocity of electon in n^"th" orbit with atomic number "z" T_(n,z)to Time period of revolution of electon in n^"th" orbit with atomic number "z" Calculate z in all in cases. (i) U_(1,2):K_(1,z)=-8:9 (ii) r_(1,z):r_(2,1) =1:12 (iii) v_(1,z):v_(3,1)=15:1 (iv) T_(1,2):T_(2,z)=9:32 Report your answer as (2r-p-q-s) where p,q,r and s represents the value of "z" in parts (i),(ii),(iii),(iv).

Which of the following option(s) is/are independent of both n and Z for H- like species? U_(n) = Potential energy of electron in n^(th) orbit KE_(n) = Kinetic energy of electron in n^(th) orbit l_(n) = Angular momentam of electoron in n^(th) orbit v_(n) = Velcity of electron in n^(th) orbit f_(n) = Frequency of electron in n^(th) orbit T_(n) = Time period of revolution of electron in n^(th) orbit

In hydrogen atom, if the difference in the energy of the electron in n = 2 and n = 3 orbits is E , the ionization energy of hydrogen atom is

Hydrogen atom: The electronic ground state of hydrogen atom contains one electron in the first orbit. If sufficient energy is provided, this electron can be promoted to higher energy levels. The electronic energy of a hydrogen-like species (any atom//ions with nuclear charge Z and one electron) can be given as E_(n)=-(R_(H)Z^(2))/(n^(2)) where R_(H)= "Rydberg constant," n= "principal quantum number" Calculate the following : (a) the kinetic energy (in eV) of an electron in the ground state of hydrogen atom. (b) the potential energy (in eV) of an electron in the ground state of hydrogen atom.