Home
Class 11
CHEMISTRY
The standard free energy change of a rea...

The standard free energy change of a reaction is `DeltaG^(@)=-115kJ//mol^(-1)` at `298 K.` Calculate the value of `log_(10)K_(p)` `(R=8.314JK^(-1)mol^(-1))`

A

`20.16`

B

`2.303`

C

`2.016`

D

`13.83`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the value of \( \log_{10} K_p \) using the given standard free energy change \( \Delta G^\circ \) and the relationship between \( \Delta G^\circ \) and \( K_p \). ### Step-by-Step Solution: 1. **Identify the given values:** - Standard free energy change, \( \Delta G^\circ = -115 \, \text{kJ/mol} \) - Temperature, \( T = 298 \, \text{K} \) - Gas constant, \( R = 8.314 \, \text{J/(K·mol)} \) 2. **Convert \( \Delta G^\circ \) to Joules:** Since \( R \) is in Joules, we need to convert \( \Delta G^\circ \) from kilojoules to joules: \[ \Delta G^\circ = -115 \, \text{kJ/mol} \times 1000 \, \text{J/kJ} = -115000 \, \text{J/mol} \] 3. **Use the relationship between \( \Delta G^\circ \) and \( K_p \):** The formula relating \( \Delta G^\circ \) and \( K_p \) is: \[ \Delta G^\circ = -2.303 \, R \, T \, \log_{10} K_p \] 4. **Rearrange the formula to solve for \( \log_{10} K_p \):** \[ \log_{10} K_p = -\frac{\Delta G^\circ}{2.303 \, R \, T} \] 5. **Substitute the values into the equation:** \[ \log_{10} K_p = -\frac{-115000}{2.303 \times 8.314 \times 298} \] 6. **Calculate the denominator:** \[ 2.303 \times 8.314 \times 298 \approx 5730.78 \] 7. **Calculate \( \log_{10} K_p \):** \[ \log_{10} K_p = \frac{115000}{5730.78} \approx 20.16 \] 8. **Final Result:** \[ \log_{10} K_p \approx 20.16 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The heat of combustion of napthalene {C_(10)H_(8)(s)} at constant volume was measured to be -5133 kJ mol^(-1) at 298 K. Calculate the value of enthalpy change (Given R=8.314 JK^(-1)mol^(-1) )

The heat of combustion of napthalene {C_(10)H_(8)(s)} at constant volume was measured to be -5133 kJ mol^(-1) at 298 K. Calculate the value of enthalpy change (Given R=8.314 JK^(-1)mol^(-1) )

The standard free energy change for a reaction is -213.3 KJ mol^(-1) "at" 25^(@)C . If the enthalpy change of the reaction is -217.77 KJ "mole"^(-1) . Calculate the magnitude of entropy change for the reaction in Joule "mole"^(-1)

A reaction is at equilibrium at 100^(@)C and the enthalpy change for the reaction is "42.6 kJ mol"^(-1) . What will be the value of DeltaS in "J K"^(-1)"mol"^(-1) ?

For a reaction, K_p = 1.8 xx 10^(-7) at 300K. What is the value of DeltaG^@ at this temeprature ? (R =8.314 J K^(-1) mol^(-1))

For a reaction, K = 1.958 xx 10^(-4) at 400 K, what is the value of DeltaG^@ at this temepratuure ? (R = 8.314 J K^(-1) mol^(-1)) .

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) = 206.8 J K^(-1) mol^(-1) .

The equilibrium constant for a reaction is 10 . What will be the value of DeltaG^(Θ) ? R=8.314 J K^(-1) mol^(-1), T=300 K .

The rate of reaction triples when temperature changes form 20^(@)C to 50^(@)C . Calculate the energy of activation for the reaction (R= 8.314JK^(-1)mol^(-1)) .