Home
Class 11
CHEMISTRY
Calculate Delta(r)G for the reaction at...

Calculate `Delta_(r)G` for the reaction at `27^(@)C`
`H_(2)(g)+2Ag^(+)(aq)hArr2Ag(s)+2H^(+)(aq)`
Given : `P_(H2)=0.5` bar, `[Ag^(+)]=10^(-5)M,`
`[H^(+)]=10^(-3)M,Delta_(r)G^(@)[Ag^(+)(aq)]=77.1kJ//mol`

A

`-154.2kJ//mol`

B

`-178.9kJ//mol`

C

`-129.5kJ//mol`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the Gibbs free energy change (Δ_rG) for the given reaction at 27°C, we will follow these steps: ### Step 1: Write the Reaction and Identify Given Data The reaction is: \[ H_2(g) + 2Ag^+(aq) \rightleftharpoons 2Ag(s) + 2H^+(aq) \] Given data: - Partial pressure of \( H_2 \) = 0.5 bar - Concentration of \( [Ag^+] \) = \( 10^{-5} \) M - Concentration of \( [H^+] \) = \( 10^{-3} \) M - Standard free energy of formation for \( Ag^+(aq) \) = \( \Delta_rG^\circ[Ag^+] = 77.1 \) kJ/mol ### Step 2: Calculate the Reaction Quotient (Q) The reaction quotient \( Q \) is calculated using the formula: \[ Q = \frac{[H^+]^2}{[Ag^+]^2 \cdot P_{H_2}} \] Substituting the values: \[ Q = \frac{(10^{-3})^2}{(10^{-5})^2 \cdot 0.5} \] Calculating \( Q \): \[ Q = \frac{10^{-6}}{10^{-10} \cdot 0.5} = \frac{10^{-6}}{5 \times 10^{-11}} = 2 \times 10^4 \] ### Step 3: Calculate Standard Gibbs Free Energy Change (Δ_rG°) For the reaction, the standard Gibbs free energy change can be calculated as: \[ \Delta_rG^\circ = \text{(products)} - \text{(reactants)} \] Since the standard Gibbs free energy of pure solids is zero: \[ \Delta_rG^\circ = 0 - (2 \times 77.1 \text{ kJ/mol}) = -154.2 \text{ kJ/mol} \] ### Step 4: Calculate Δ_rG Using the Formula The Gibbs free energy change at non-standard conditions is given by: \[ \Delta_rG = \Delta_rG^\circ + RT \ln Q \] Where: - \( R = 8.314 \, \text{J/mol·K} = 0.008314 \, \text{kJ/mol·K} \) - \( T = 27°C = 300 \, \text{K} \) Now substituting the values: \[ \Delta_rG = -154.2 \text{ kJ/mol} + (0.008314 \text{ kJ/mol·K} \cdot 300 \text{ K}) \ln(2 \times 10^4) \] Calculating \( RT \): \[ RT = 0.008314 \times 300 = 2.4942 \text{ kJ/mol} \] Now, calculate \( \ln(2 \times 10^4) \): \[ \ln(2 \times 10^4) \approx 9.903 \] Now substituting back: \[ \Delta_rG = -154.2 + (2.4942 \cdot 9.903) \] \[ \Delta_rG = -154.2 + 24.701 \] \[ \Delta_rG \approx -129.5 \text{ kJ/mol} \] ### Final Answer Thus, the Gibbs free energy change for the reaction is: \[ \Delta_rG \approx -129.5 \text{ kJ/mol} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate Delta_(r)S_("sys")^(@) for the following reaction at 373 K: CO(g) + H_(2)O(g) to CO_(2)(g) + H_(2)(g) Delta_(r)H^(@) = -4.1 xx 10^(4) J, Delta_(r)S^(@)("unv") = 56 J//K

Calculate Delta_(r)G^(c-) of the reaction : Ag^(o+)(aq)+Cl^(c-)(aq) rarr AgCl(s) Given :Delta_(f)G^(c-)._(AgCl)=-109kJ mol ^(-1) Delta_(f)G^(c-)_((Cl^(c-)))=-129k J mol ^(-1) Delta_(f)G^(c-)._((Ag^(o+)))=-77 kJ mol ^(-1)

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

The cell reaction 2Ag^+(aq)+H_2(g)to2H^+(aq)+2Ag(s) ,best represented by :

Calculate the standard free energy change for the following reaction Zn(s) + Cu^(2+)(aq) to Zn^(2+) (aq) + Cu(s) Given : Delta_fG^@ [Cu^(2+)(aq)] = 65.0kJ mol^(-1) Delta_f G^@ [ Zn^(2+) (aq)] = -147.2 kJ mol^(-1)

Select the correct cell reaction of the cell Pt(s)|Cl_2(g)|Cl^(-)(aq)"||"Ag^+(aq)|Ag(s) :

Write short hand notation for the following reaction Sn^(2+)(aq)+2Ag^(+)(aq)toSn^(4+)(aq)+2Ag(s) .

The equilibrium constant for the reaction, Ag_2O(s) hArr2Ag(s) +1/2 O_2 (g) is given by

Write the cell reaction for each of the following cells. Pt,H_(2)(g)|H^(+)(aq)|Ag^(+)(aq)|Ag(s)