Home
Class 11
CHEMISTRY
Variation of equilibrium constan K with ...

Variation of equilibrium constan K with temperature is given by van't Hoff equation
`InK=(Delta_(r)S^(@))/R-(Delta_(r)H^(@))/(RT)`
for this equation, `(Delta_(r)H^(@))` can be evaluated if equilibrium constans `K_(1)` and `K_(2)` at two temperature `T_(1)` and `T_(2)` are known.
`log(K_(2)/K_(1))=(Delta_(r)H^(@))/(2.303R)[1/T_(1)-1/T_(2)]`
Variation of `log_(10)` K with `1/T` is shown by the following graph in which straight line is at `45^(@)` hence `DeltaH^(@)` is :

A

`-4.606kJ//mol`

B

`-19.147 kJ//mol`

C

`-8.314 kJ//mol`

D

`-10 kJ//mol`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Variation of equilibrium constan K with temperature is given by van't Hoff equation InK=(Delta_(r)S^(@))/R-(Delta_(r)H^(@))/(RT) for this equation, (Delta_(r)H^(@)) can be evaluated if equilibrium constans K_(1) and K_(2) at two temperature T_(1) and T_(2) are known. log(K_(2)/K_(1))=(Delta_(r)H^(@))/(2.303R)[1/T_(1)-1/T_(2)] Select the correct statement :

Variation of equilibrium constan K with temperature is given by van't Hoff equation InK=(Delta_(r)S^(@))/R-(Delta_(r)H^(@))/(RT) for this equation, (Delta_(r)H^(@)) can be evaluated if equilibrium constants K_(1) and K_(2) at two temperature T_(1) and T_(2) are known. log(K_(2)/K_(1))=(Delta_(r)H^(@))/(2.303R)[1/T_(1)-1/T_(2)] For an isomerization X(g)hArrY(g) the temperature dependency of equilibrium constant is given by : lnK=2-(1000)/T The value of Delta_(r)S^(@) at 300 K is :

Variation of equilibrium constan K with temperature is given by van't Hoff equation InK=(Delta_(r)S^(@))/R-(Delta_(r)H^(@))/(RT) for this equation, (Delta_(r)H^(@)) can be evaluated if equilibrium constants K_(1) and K_(2) at two temperature T_(1) and T_(2) are known. log(K_(2)/K_(1))=(Delta_(r)H^(@))/(2.303R)[1/T_(1)-1/T_(2)] The equilibrium constant Kp for the following reaction is 1 at 27^(@)C and 4 at 47^(@)C. A(g)hArrB(g)+C(g) For the reaction calculate enthalpy change for the B(g)+C(g)hArrA(g) (Given : R=2cal//mol-K)

For the reaction at 300 K A(g)hArrV(g)+S(g) Delta_(r)H^(@)=-30kJ//mol, Delta_(r)S^(@)=-0.1kJK^(-1).mol^(-1) What is the value of equilibrium constant ?

Activation energy (E_(a)) and rate constants ( k_(1) and k_(2) ) of a chemical reaction at two different temperatures ( T_(1) and T_(2) ) are related by

The effect of temperature on equilibrium constant is expressed as (T_(2)gtT_(1)) log K_(2)//K_(1)=(-DeltaH)/(2.303)[(1)/(T_(2))-(1)/(T_(1))] . For endothermic, false statement is

The temperature dependence of equilibrium constant of a reaction is given by ln K_(eq) = 4.8 -(2059)/(T) . Find Delta_(r)G^(Theta), Delta_(r)H^(Theta), Delta_(r)S^(Theta) at 298 K

The temperature dependence of equilibrium constant of a reaction is given by In K_(eq) = 4.8 -(2059)/(T) . Find Delta_(r)G^(Theta), Delta_(r)H^(Theta), Delta_(r)S^(Theta) .

The graph between log k versus 1//T is a straight line.

For a certain reaction the variation of rate constant with temperature is given by the equation ln k_(t) = lnk_(0) + ((ln 3)t)/(10) (t ge 0^(@)C) The value of temperature coefficient of the reaction is