Home
Class 11
CHEMISTRY
Given K(a) values of 5.76xx10^(-10) and ...

Given `K_(a)` values of `5.76xx10^(-10)` and `4.8xx10^(-10)` for `NH_(4)^(+)` and HCN respectively. What is the equilibrium constant for the following reaction?
`NH_(4)^(+)(aq.)+CN^(-)(aq.)hArrNH_(3)(aq.)+HCN(aq.)`

A

`0.83`

B

`1.2`

C

`8.0xx10^(-11)`

D

`27.6xx10^(-10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant for the reaction: \[ \text{NH}_4^+(aq) + \text{CN}^-(aq) \rightleftharpoons \text{NH}_3(aq) + \text{HCN}(aq) \] we will use the given \( K_a \) values for the dissociation of \( \text{NH}_4^+ \) and \( \text{HCN} \). ### Step 1: Write the dissociation reactions and their \( K_a \) values 1. The dissociation of ammonium ion (\( \text{NH}_4^+ \)): \[ \text{NH}_4^+(aq) \rightleftharpoons \text{NH}_3(aq) + \text{H}^+(aq) \] The equilibrium constant for this reaction is given as: \[ K_{a1} = 5.76 \times 10^{-10} \] 2. The dissociation of hydrogen cyanide (\( \text{HCN} \)): \[ \text{HCN}(aq) \rightleftharpoons \text{H}^+(aq) + \text{CN}^-(aq) \] The equilibrium constant for this reaction is given as: \[ K_{a2} = 4.8 \times 10^{-10} \] ### Step 2: Reverse the second reaction To find the equilibrium constant for the desired reaction, we need to reverse the dissociation of \( \text{HCN} \): \[ \text{H}^+(aq) + \text{CN}^-(aq) \rightleftharpoons \text{HCN}(aq) \] When we reverse the reaction, the new equilibrium constant (\( K_{a2}' \)) is the inverse of \( K_{a2} \): \[ K_{a2}' = \frac{1}{K_{a2}} = \frac{1}{4.8 \times 10^{-10}} \] ### Step 3: Combine the reactions Now, we can add the two reactions together: 1. \( \text{NH}_4^+(aq) \rightleftharpoons \text{NH}_3(aq) + \text{H}^+(aq) \) (with \( K_{a1} \)) 2. \( \text{H}^+(aq) + \text{CN}^-(aq) \rightleftharpoons \text{HCN}(aq) \) (with \( K_{a2}' \)) The overall reaction becomes: \[ \text{NH}_4^+(aq) + \text{CN}^-(aq) \rightleftharpoons \text{NH}_3(aq) + \text{HCN}(aq) \] ### Step 4: Calculate the equilibrium constant for the overall reaction The equilibrium constant for the overall reaction (\( K_{eq} \)) is the product of the equilibrium constants of the individual reactions: \[ K_{eq} = K_{a1} \times K_{a2}' \] Substituting the values: \[ K_{eq} = K_{a1} \times \frac{1}{K_{a2}} = 5.76 \times 10^{-10} \times \frac{1}{4.8 \times 10^{-10}} \] ### Step 5: Simplify the expression Calculating the above expression: \[ K_{eq} = \frac{5.76}{4.8} = 1.2 \] ### Final Answer Thus, the equilibrium constant for the reaction is: \[ K_{eq} = 1.2 \] ---
Promotional Banner

Topper's Solved these Questions

  • IONIC EEQUILIBRIUM

    NARENDRA AWASTHI ENGLISH|Exercise Level- 2|35 Videos
  • IONIC EEQUILIBRIUM

    NARENDRA AWASTHI ENGLISH|Exercise Level- 3|19 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|15 Videos
  • SOLID STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective Problems|13 Videos

Similar Questions

Explore conceptually related problems

Write the equilibrium constant expression for the following reactions : Fe^(3+) (aq) + SCN^(-) (aq) hArr FeSCN^(2+) (aq)

Write the equilibrium constant expressions for the following reactions. NH_3( aq) +H_2O (l) hArr NH_4^(+) (aq) +OH^(-) (aq)

Suppose the equilibrium constant for the reaction, 3M^(3+) rarr 2M^(2+)(aq) +M^(5+) (aq)

Write the equilibrium constant expressions for the following reactions. Cr_2O_4^(2-) (aq) +Pb^(2+) (aq) hArr PbCrO_4(s)

What is the Lewis acid and base in the following reaction? 2NH_(3) (aq) + Ag^(+) (aq) to [Ag(NH_(3))_(2)]^(+) (aq) .

Write the equilibrium constant expression for the following reactions : BaSO_4(s) hArr Ba^(2+) (aq) +SO_4^(2-) (aq)

The equilibrium constant K_c for the following reaction will be K_2CO_3(aq)+BaSO_4(s) hArr BaCO_3(s) +K_2SO_4(aq)

The expression for equilibrium constant, K_(c) for the following reaction is Fe_((aq))^(3+)+3OH_((aq))^(-)hArrFe(OH)_(3(s))

Write the expressions for the equilibrium constant K_c for each of the following reactions. Fe^(3+) (aq) + 3OH^(-) (aq) hArr Fe(OH)_3 (s)

The reaction NH_(4)^(+)+CN rarr HCN(aq)+NH_(3)(aq) proceeds in