What is the hydronium ion concentration of a `0.02` M solution of `Cu^(2+)` solution of copper(II) perchlorate? The acidity constant of the following reaction is `5xx10^(-9)`. `Cu^(2+)(aq.)+2H_(2)O(l)hArrCu(OH)^(+)(aq.)+H_(3)O^(+)(aq.)`
(a)`1xx10^(-5)`
(b)`7xx10^(-4)`
(c)`5xx10^(-4)`
(d)`1xx10^(-4)`
A
`1xx10^(-5)`
B
`7xx10^(-4)`
C
`5xx10^(-4)`
D
`1xx10^(-4)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the hydronium ion concentration of a `0.02 M` solution of `Cu^(2+)` from the given reaction and acidity constant, we can follow these steps:
### Step 1: Write the Reaction
The reaction given is:
\[ \text{Cu}^{2+}(aq) + 2 \text{H}_2\text{O}(l) \rightleftharpoons \text{CuOH}^+(aq) + \text{H}_3\text{O}^+(aq) \]
### Step 2: Identify Initial Concentrations
The initial concentration of `Cu^(2+)` is `0.02 M`. We can denote this concentration as \( C = 0.02 \, \text{M} \).
### Step 3: Set Up the Equilibrium Expression
Let \( \alpha \) be the degree of dissociation of `Cu^(2+)`. At equilibrium, the concentrations will be:
- For `Cu^(2+)`: \( C(1 - \alpha) \)
- For `CuOH^+`: \( C\alpha \)
- For `H3O^+`: \( C\alpha \)
The equilibrium expression for the acidity constant \( K_a \) is given by:
\[
K_a = \frac{[\text{CuOH}^+][\text{H}_3\text{O}^+]}{[\text{Cu}^{2+}]} = \frac{(C\alpha)(C\alpha)}{C(1 - \alpha)}
\]
### Step 4: Simplify the Expression
Assuming \( \alpha \) is very small compared to 1 (which is valid for weak acids), we can simplify the expression:
\[
K_a \approx \frac{C\alpha^2}{C} = C\alpha^2
\]
### Step 5: Substitute Known Values
We know:
- \( K_a = 5 \times 10^{-9} \)
- \( C = 0.02 \)
Substituting these values into the equation:
\[
5 \times 10^{-9} = 0.02 \alpha^2
\]
### Step 6: Solve for \( \alpha \)
Rearranging the equation gives:
\[
\alpha^2 = \frac{5 \times 10^{-9}}{0.02}
\]
\[
\alpha^2 = 2.5 \times 10^{-7}
\]
\[
\alpha = \sqrt{2.5 \times 10^{-7}} = 5 \times 10^{-4}
\]
### Step 7: Calculate Hydronium Ion Concentration
The concentration of hydronium ions \([H_3O^+]\) is given by:
\[
[H_3O^+] = C\alpha = 0.02 \times 5 \times 10^{-4}
\]
\[
[H_3O^+] = 1 \times 10^{-5} \, \text{M}
\]
### Step 8: Conclusion
Thus, the hydronium ion concentration of the solution is:
\[
\boxed{1 \times 10^{-5} \, \text{M}}
\]
What is the acidity constant for the following reaction given that the hydronium ion concentration of a 0.04 M solution of Ni^(2+) solution of nickel(II) perchlorate is 4.5xx10^(-6) ? Ni^(2+)(aq.)+2H_(2)O(l)hArrNi(OH)^(+)(aq.)+H_(3)O^(+)(aq.)
The equilibrium constant for the reaction given is 3.6xx10^(-7)OCl^(-)(aq)+H_2O(l)hArrHOCl(aq)+OH^(-)(aq). What is Ka for HOCl ?
Calculate the pH at 25^(@) C of a solution that is 0.10 M in Fe(NO_(3))_(3). The acid dissocation constant for the reaction given below is 1.0xx10^(-3). [Fe(H_(2)O)_(6)]^(3+)+H_(2)O(l)hArrH_(3)O^(+)(aq.)+[Fe(H_(2)O)_(5)(OH)]^(2+)
Calculate the pH of a 0.15 M aqueous solutions of AlCl_(3) Given : [Al(H_(2)O)_(6)]^(3+)(aq)+H_(2)O(l)hArr[(AlH_(2)O)_(5)OH]^(2+)(aq),K_(a)=1.5xx10^(-5)
A beer has a pH of 4.30. What is the [H_(3)O^(+)] ? (a) 3.0xx10^(-4) (b) 2.0xx10^(-4) (c) 2.0xx10^(5) (d) 5.0xx10^(-5)
The H ion concentration of a solution is 4.75 xx 10^(-5) M. Then the OH ion concentration of the same solution is
What is the ionization constant of an acid if the hydronium ion concentration of a 0.40 M solution is 1.40xx10^(-4) M? (a) 1.96xx10^(-8) (b) 1.22xx10^(-9) (c) 4.90xx10^(-8) (d) 1.40xx10^(-6)
Given K_(a) values of 5.76xx10^(-10) and 4.8xx10^(-10) for NH_(4)^(+) and HCN respectively. What is the equilibrium constant for the following reaction? NH_(4)^(+)(aq.)+CN^(-)(aq.)hArrNH_(3)(aq.)+HCN(aq.)
Simplify : (4xx10^(-2))-(2.5xx10^(-3))
If hydrogen ion concentration in a solution is 1xx10^(-5) moles/litre, calculate the concentration of OH ion in this solution (K_(w)=10^(-14)"moles"^(2)L^(-2)).