What is the acidity constant for the following reaction given that the hydronium ion concentration of a 0.04 M solution of `Ni^(2+)` solution of nickel(II) perchlorate is `4.5xx10^(-6)`? `Ni^(2+)(aq.)+2H_(2)O(l)hArrNi(OH)^(+)(aq.)+H_(3)O^(+)(aq.)`
A
`2xx10^(-12)`
B
`4xx10^(-6)`
C
`5xx10^(-12)`
D
`5xx10^(-10)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the acidity constant (Ka) for the reaction:
\[ \text{Ni}^{2+}(aq) + 2 \text{H}_2\text{O}(l) \rightleftharpoons \text{NiOH}^+(aq) + \text{H}_3\text{O}^+(aq) \]
we will follow these steps:
### Step 1: Write the expression for the acidity constant (Ka)
The acidity constant for the reaction can be expressed as:
\[
K_a = \frac{[\text{NiOH}^+][\text{H}_3\text{O}^+]}{[\text{Ni}^{2+}][\text{H}_2\text{O}]^2}
\]
Since water is a pure liquid, its concentration remains constant and can be omitted from the expression. Thus, we have:
\[
K_a = \frac{[\text{NiOH}^+][\text{H}_3\text{O}^+]}{[\text{Ni}^{2+}]}
\]
### Step 2: Set up the initial and equilibrium concentrations
Given:
- Initial concentration of \(\text{Ni}^{2+}\) = 0.04 M
- Hydronium ion concentration \([\text{H}_3\text{O}^+]\) = \(4.5 \times 10^{-6}\) M
At equilibrium, let \(x\) be the change in concentration:
- \([\text{Ni}^{2+}] = 0.04 - x\)
- \([\text{NiOH}^+] = x\)
- \([\text{H}_3\text{O}^+] = x\)
### Step 3: Substitute the known values
Since we know that \(x = [\text{H}_3\text{O}^+] = 4.5 \times 10^{-6}\), we can substitute:
\[
K_a = \frac{(4.5 \times 10^{-6})(4.5 \times 10^{-6})}{0.04 - 4.5 \times 10^{-6}}
\]
### Step 4: Simplify the denominator
Since \(4.5 \times 10^{-6}\) is much smaller than 0.04, we can approximate:
\[
K_a \approx \frac{(4.5 \times 10^{-6})^2}{0.04}
\]
### Step 5: Calculate \(K_a\)
Calculating \( (4.5 \times 10^{-6})^2 \):
\[
(4.5 \times 10^{-6})^2 = 20.25 \times 10^{-12}
\]
Now substituting this value into the \(K_a\) expression:
\[
K_a \approx \frac{20.25 \times 10^{-12}}{0.04}
\]
Calculating the division:
\[
K_a \approx 20.25 \times 10^{-12} \div 0.04 = 20.25 \div 4 \times 10^{-10} = 5.0625 \times 10^{-10}
\]
### Step 6: Round to significant figures
Rounding gives us:
\[
K_a \approx 5 \times 10^{-10}
\]
### Final Answer
Thus, the acidity constant \(K_a\) for the reaction is approximately:
\[
\boxed{5 \times 10^{-10}}
\]
What is the hydronium ion concentration of a 0.02 M solution of Cu^(2+) solution of copper(II) perchlorate? The acidity constant of the following reaction is 5xx10^(-9) . Cu^(2+)(aq.)+2H_(2)O(l)hArrCu(OH)^(+)(aq.)+H_(3)O^(+)(aq.) (a) 1xx10^(-5) (b) 7xx10^(-4) (c) 5xx10^(-4) (d) 1xx10^(-4)
What is the concentration of hydrogen ions [H^(+)(aq)] in a solution when pH = 0?
What change will occur for the following reaction if the hypochlorous acid solution is diluted from 0.1 to 0.01 M? HOCl(aq.)+H_(2)O(l)hArrOCl^(-)(aq.)+H_(3)O+(aq.)
The heat liberated in the following reaction H^(+)(aq)+OH^(-)(aq) to H_(2)O(l) is
Calculate the pH of a 0.15 M aqueous solutions of AlCl_(3) Given : [Al(H_(2)O)_(6)]^(3+)(aq)+H_(2)O(l)hArr[(AlH_(2)O)_(5)OH]^(2+)(aq),K_(a)=1.5xx10^(-5)
The equilibrium constant for the reaction given is 3.6xx10^(-7)OCl^(-)(aq)+H_2O(l)hArrHOCl(aq)+OH^(-)(aq). What is Ka for HOCl ?
Write the equilibrium constant expressions for the following reactions. NH_3( aq) +H_2O (l) hArr NH_4^(+) (aq) +OH^(-) (aq)
Write the equilibrium constant expression for the following reactions : HCl( aq) +H_2O(l) hArr H_3O^(+) +Cl^(-) (aq)
What is the reaction given below, called ? H_(2)O_((l)) + H_(2)O_((l)) hArr H_(3)O_((aq))^(+) + OH_((aq))^(-)
To calculate K_(W) of water H_(2)O(l)+H_(2)O_(l)toH_(2)O^(+)(aq)+OH^(-)(aq)