What is the molarity of `Fe(CN)_(6)^(4-)` in a saturated solution of `Ag_(4)[Fe(CN)_(6)]`? `(K_(sp)=1.6xx10^(-41))`
A
`1.6xx10^(-8)`
B
`5.2xx10^(-8)`
C
`2.0xx10^(-8)`
D
`2.3xx10^(-9)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the molarity of \( \text{Fe(CN)}_6^{4-} \) in a saturated solution of \( \text{Ag}_4[\text{Fe(CN)}_6] \), we can follow these steps:
### Step 1: Write the dissociation equation
The dissociation of \( \text{Ag}_4[\text{Fe(CN)}_6] \) in water can be expressed as:
\[
\text{Ag}_4[\text{Fe(CN)}_6] (s) \rightleftharpoons 4 \text{Ag}^+ (aq) + \text{Fe(CN)}_6^{4-} (aq)
\]
### Step 2: Define solubility
Let the solubility of \( \text{Ag}_4[\text{Fe(CN)}_6] \) in mol/L be \( s \). According to the dissociation equation, for every 1 mole of \( \text{Ag}_4[\text{Fe(CN)}_6] \) that dissolves, it produces 4 moles of \( \text{Ag}^+ \) and 1 mole of \( \text{Fe(CN)}_6^{4-} \). Therefore:
- The concentration of \( \text{Ag}^+ \) will be \( 4s \)
- The concentration of \( \text{Fe(CN)}_6^{4-} \) will be \( s \)
### Step 3: Write the expression for \( K_{sp} \)
The solubility product constant \( K_{sp} \) for the dissociation can be expressed as:
\[
K_{sp} = [\text{Ag}^+]^4 [\text{Fe(CN)}_6^{4-}]
\]
Substituting the concentrations in terms of \( s \):
\[
K_{sp} = (4s)^4 \cdot s = 256s^5
\]
### Step 4: Set up the equation with the given \( K_{sp} \)
We know that \( K_{sp} = 1.6 \times 10^{-41} \). Therefore, we can set up the equation:
\[
256s^5 = 1.6 \times 10^{-41}
\]
### Step 5: Solve for \( s \)
Now, we can solve for \( s \):
\[
s^5 = \frac{1.6 \times 10^{-41}}{256}
\]
Calculating the right-hand side:
\[
s^5 = \frac{1.6 \times 10^{-41}}{256} = 6.25 \times 10^{-44}
\]
Now, take the fifth root to find \( s \):
\[
s = (6.25 \times 10^{-44})^{1/5}
\]
### Step 6: Calculate \( s \)
Calculating \( s \):
\[
s \approx 3.98 \times 10^{-9} \, \text{mol/L}
\]
### Step 7: Conclusion
Since \( s \) represents the molarity of \( \text{Fe(CN)}_6^{4-} \), we conclude that:
\[
\text{Molarity of } \text{Fe(CN)}_6^{4-} \approx 3.98 \times 10^{-9} \, \text{mol/L}
\]
What is the molarity of F^(-) ions in a saturated solution of BaF_(2) ? (K_(sp)=1.0xx10^(-6))
O.N of Fe in K_(4)[Fe(CN)_(6)] is
Oxidation state of Fe in K_(4)[Fe(CN)_(6)]
The complex ion [Fe(CN)_(6)]^(4-) contains:
With Co^(2+) ions [Fe(CN)_(6)]^(3-) gives a ……..ppt of Co_(3)[Fe(CN)_(6)]
Why K _(3)[Fe(CN)_(6)] is more stable than K_(4)[Fe(CN)_(6)]
In the complex K_(2)Fe[Fe(CN)_(6)] :
Calculate the solubilty and solubility product of Co_(2) [Fe(CN)_(6)] is water at 25^(@)C from the following data: conductivity of a saturated solution of Co_(2)[Fe(CN)_(6)] is 2.06 xx 10^(-6) Omega^(-1) cm^(-1) and that of water used 4.1 xx 10^(-7) Omega^(-1) cm^(-1) . The ionic molar conductivites of Co^(2+) and Fe(CN)_(6)^(4-) are 86.0 Omega^(-1)cm^(-1) mol^(-1) and 44.0 Omega^(-1) cm^(-1) mol^(-1) .
Calculate the solubility product of Co_(2)[Fe(CN)_(6)] in water at 25^(@)C . Given, conductivity of saturated solutions of Co_(2)[Fe(CN)_(6)] is 2.06 xx 10^(-6) Omega^(-1)cm^(-1) and that of water used is 4.1 xx 10^(-7) Omega^(-1)cm^(-1) . The ionic molar conductivities of Co^(2+) and [Fe(CN)_(6)]^(4) are 86.0 Omega cm^(2)mol^(-1) and 444.0 Omega^(-1) cm^(2)mol^(-1) , respectivly.
With Zn^(2+) ions [Fe(CN)_(6)]^(4-) ions gives …ppt