Home
Class 11
CHEMISTRY
Calculate DeltaS for following process :...

Calculate `DeltaS` for following process :
`underset("at" 100K)(X(s)) underset("at" 200 K)(rarrX(l))`
Given : Melting point of `X_(s)=100K,DeltaH_("Fusion")=20kJ//"mol",C_(p.m)(X,l)=10J//"mol".K`

A

`26.93 J//K`

B

`206.93 J//K`

C

`203 J//K`

D

`206.93 kJ//K`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the change in entropy (ΔS) for the process of a solid (X) melting into a liquid (X) and then heating from 100 K to 200 K, we will break the problem into two parts: the melting process and the heating process. ### Step 1: Calculate ΔS during melting (ΔS1) The change in entropy during the melting process can be calculated using the formula: \[ \Delta S_1 = \frac{\Delta H_{\text{fusion}}}{T} \] Where: - ΔH_fusion = 20 kJ/mol = 20,000 J/mol (since we need to convert kJ to J) - T = 100 K (the melting point) Substituting the values: \[ \Delta S_1 = \frac{20,000 \, \text{J/mol}}{100 \, \text{K}} = 200 \, \text{J/mol·K} \] ### Step 2: Calculate ΔS during heating (ΔS2) For the heating process from 100 K to 200 K, we use the formula: \[ \Delta S_2 = \int_{T_1}^{T_2} \frac{C_{p,m}}{T} \, dT \] Where: - \(C_{p,m} = 10 \, \text{J/mol·K}\) (given) - \(T_1 = 100 \, \text{K}\) - \(T_2 = 200 \, \text{K}\) This integral can be simplified as: \[ \Delta S_2 = C_{p,m} \cdot \ln\left(\frac{T_2}{T_1}\right) \] Substituting the values: \[ \Delta S_2 = 10 \, \text{J/mol·K} \cdot \ln\left(\frac{200}{100}\right) \] Calculating the logarithm: \[ \ln\left(\frac{200}{100}\right) = \ln(2) \approx 0.693 \] Thus, \[ \Delta S_2 = 10 \cdot 0.693 = 6.93 \, \text{J/mol·K} \] ### Step 3: Calculate total ΔS Now, we can find the total change in entropy (ΔS) by adding ΔS1 and ΔS2: \[ \Delta S = \Delta S_1 + \Delta S_2 \] Substituting the values: \[ \Delta S = 200 \, \text{J/mol·K} + 6.93 \, \text{J/mol·K} = 206.93 \, \text{J/mol·K} \] ### Final Answer Thus, the total change in entropy for the process is: \[ \Delta S = 206.93 \, \text{J/mol·K} \] ---

To calculate the change in entropy (ΔS) for the process of a solid (X) melting into a liquid (X) and then heating from 100 K to 200 K, we will break the problem into two parts: the melting process and the heating process. ### Step 1: Calculate ΔS during melting (ΔS1) The change in entropy during the melting process can be calculated using the formula: \[ \Delta S_1 = \frac{\Delta H_{\text{fusion}}}{T} ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    NARENDRA AWASTHI ENGLISH|Exercise Level 2|40 Videos
  • THERMODYNAMICS

    NARENDRA AWASTHI ENGLISH|Exercise Level 3|89 Videos
  • STOICHIOMETRY

    NARENDRA AWASTHI ENGLISH|Exercise Match the Colum-II|6 Videos

Similar Questions

Explore conceptually related problems

What is the melting point of benzene if DeltaH_("fusion")= 9.95kJ//mol and DeltaS_("fusion")= 35.7J//K-"mol"

Calculate the equilibrium constant for the following reaction at 298 K and 1 atm pressure.C(graphite)+H2O(l)=CO(g)+H2(g) Given : 'Delta_f H^@ , [H_2O (l)] = -286.0 kJ mol^(-1) , Delta_f H^@ [ CO (g)] = - 110.5 kJ mol^(-1) , DeltaS^@ at 298 K for the reaction =252.6 J k^(-1) mol^(-1) . Gas constant R = 8.31 Jk^(-1) mol^(-1) .

Calculate the equilibrium constant for the following reaction at 298K and 1 atmospheric pressure: C(grap hite) +H_(2)O(l) rarr CO(g) +H_(2)(g) Given Delta_(f)H^(Theta) at 298 K for H_(2)O(l) =- 286.0 kJ mol^(-1) for CO(g) =- 110.5 kJ mol^(-1) DeltaS^(Theta) at 298K for the reaction = 252.6 J K^(-1) mol^(-1)

Calculate DeltaG^(Theta) for the following reaction: CO(g) +((1)/(2))O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.84 kJ Given, S_(CO_(2))^(Theta)=213.8 J K^(-1) mol^(-1), S_(CO(g))^(Theta)= 197.9 J K^(-1) mol^(-1), S_(O_(2))^(Theta)=205.0 J K^(-1)mol^(-1) ,

Calculate the entropy changes of fusion and vapourisation for chlorine from the following data: Delta_(fus)H = 6.40 kJ mol^(-1) , melting point =- 100^(@)C Delta_(vap)H = 20.4 kJ mol^(-1) , boiling point =- 30^(@)C

What is the normal boiling point of mercury? Given : DeltaH _(f)^(@)(Hg,l)=0,S^(@)(Hg,l)=77.4 J//K-"mol" DeltaH _(f)^(@)(Hg,g)= 60.8 kJ//"mol", S^(@)(Hg, g)=174.4 J//K-"mol"

Melting & boiling point of NaCl respectively are 1080 K & 1600K. Delta S for stage -I & II in NaCl_((s)) underset(Delta H_("fus") = 30kJ)overset(I)rarr NaCl_((l)) underset(Delta H_("vap") = 160kJ)overset(II)rarr are

Consider the following reaction : CO(g)+2H_(2)(g)iffCH_(3)OH(g) Given : Delta_(f)H^(@)(CH_(3)OH,g)=-201 " kJ"//"mol", " "Delta_(f)H^(@)(CO,g)=-114" kJ"//"mol" S^(@)(CH_(3)OH,g)=240" J"//"K-mol, "S^(@)(H_(2),g)=29" JK"^(-1)" mol"^(-1) S^(@)(CO,g)=198 " J"//"mol-K, "C_(p,m)^(@)(H_(2))=28.8 " J"//"mol-K" C_(p,m)^(@)(CO)=29.4 " J"//"mol-K, "C_(p,m)^(@)(CH_(3)OH)=44 " J"//"mol-K" and " "ln ((320)/(300))=0.06 , all data at 300 K Delta_(r )G^(@) at 320 K is :

Calculate the equilibrium constant for the following reaction at 298 K: 2H_2O (l) to 2H_2(g) + O_2(g) Given : Delta_fG^@ [ H_2O (l)] = - 273.2 kJ mol^(-1) R = 8.314 J mol^(-1) K^(-1) .

Calculate DeltaG^(Theta) for the following reaction at 298K: CO(g) +((1)/(2))O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.84 kJ Given, S_(CO_(2))^(Theta)=213.8 J K^(-1) mol^(-1), S_(CO(g))^(Theta)= 197.9 J K^(-1) mol^(-1), S_(O_(2))^(Theta)=205.0 J K^(-1)mol^(-1) ,

NARENDRA AWASTHI ENGLISH-THERMODYNAMICS-Level 3
  1. Calculate DeltaS for following process : underset("at" 100K)(X(s)) ...

    Text Solution

    |

  2. The first law of thermodynamics for a closed system is dU = dq + dw, w...

    Text Solution

    |

  3. The first law of thermodynamics for a closed system is dU = dq + dw, w...

    Text Solution

    |

  4. If the boundary of system moves by an infinitesimal amount, the work i...

    Text Solution

    |

  5. If the boundary of system moves by an infinitesimal amount, the work i...

    Text Solution

    |

  6. If the boundary of system moves by an infinitesimal amount, the work i...

    Text Solution

    |

  7. If the boundary of system moves by an infinitesimal amount, the work i...

    Text Solution

    |

  8. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  9. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  10. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  11. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  12. Consider the following reaction : CO(g)+2H(2)(g)iffCH(3)OH(g) Give...

    Text Solution

    |

  13. Enthalpy of neutralization is defined as the enthalpy change when 1 mo...

    Text Solution

    |

  14. Enthalpy of neutralzation is defined as the enthalpy change when 1 mol...

    Text Solution

    |

  15. Enthalpy of neutralzation is defined as the enthalpy change when 1 mol...

    Text Solution

    |

  16. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  17. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  18. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  19. Identify the intensive quantities from the following : (a)Enthalpy ...

    Text Solution

    |

  20. Identify the extensive quantities from the following :

    Text Solution

    |

  21. Identify the state functions from the following :

    Text Solution

    |