Home
Class 11
CHEMISTRY
Standard Gibb's energy of reaction (Delt...

Standard Gibb's energy of reaction `(Delta_(r )G^(@))` at a certain temperature can be computed `Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r )S^(@)` and the change in the value of `Delta_(r)H^(@)` and `Delta_(r)S^(@)` for a reaction with temperature can be computed as follows :
`Delta_(r )H_(T_(2))^(@)-Delta_(r )H_(T_(1))^(@)=Delta_(r )C_(p)^(@)(T_(2)-T_(1))`
`Delta_(r )S_(T_(2))^(@)-Delta_(r )S_(T_(1))^(@)=Delta_(r )C_(p)^(@)ln.(T_(2)/T_(1))`
`" "Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r)S^(@)`
and `" by "Delta_(r )G^(@)=-"RT " ln K_(eq)`.
Consider the following reaction : `CO(g)+2H_(2)(g)iffCH_(3)OH(g)`
Given : `Delta_(f)H^(@)(CH_(3)OH,g)=-201 " kJ"//"mol", " "Delta_(f)H^(@)(CO,g)=-114" kJ"//"mol"`
`S^(@)(CH_(3)OH,g)=240" J"//"K-mol, "S^(@)(H_(2),g)=29" JK"^(-1)" mol"^(-1)`
`S^(@)(CO,g)=198 " J"//"mol-K, "C_(p,m)^(@)(H_(2))=28.8 " J"//"mol-K"`
`C_(p,m)^(@)(CO)=29.4 " J"//"mol-K, "C_(p,m)^(@)(CH_(3)OH)=44 " J"//"mol-K"`
and `" "ln ((320)/(300))=0.06`, all data at 300 K
`Delta_(r )S^(@)` at 320 K is :

A

155.18 J/mol-K

B

150.02 J/mol-K

C

172 J/mol-K

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the change in standard entropy (\( \Delta_r S^\circ \)) at 320 K for the reaction \( \text{CO(g)} + 2\text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) \), we will follow these steps: ### Step 1: Calculate \( \Delta_r S^\circ \) at 300 K The standard entropy change for the reaction at 300 K can be calculated using the formula: \[ \Delta_r S^\circ_{300} = S^\circ(\text{CH}_3\text{OH}) - S^\circ(\text{CO}) - 2 \cdot S^\circ(\text{H}_2) \] Given: - \( S^\circ(\text{CH}_3\text{OH}) = 240 \, \text{J K}^{-1} \text{mol}^{-1} \) - \( S^\circ(\text{CO}) = 198 \, \text{J K}^{-1} \text{mol}^{-1} \) - \( S^\circ(\text{H}_2) = 29 \, \text{J K}^{-1} \text{mol}^{-1} \) Substituting the values: \[ \Delta_r S^\circ_{300} = 240 - 198 - 2 \cdot 29 \] \[ \Delta_r S^\circ_{300} = 240 - 198 - 58 \] \[ \Delta_r S^\circ_{300} = 240 - 256 = -16 \, \text{J K}^{-1} \text{mol}^{-1} \] ### Step 2: Calculate \( \Delta_r C_p^\circ \) Next, we calculate the change in heat capacity (\( \Delta_r C_p^\circ \)): \[ \Delta_r C_p^\circ = C_{p,m}^\circ(\text{CH}_3\text{OH}) - C_{p,m}^\circ(\text{CO}) - 2 \cdot C_{p,m}^\circ(\text{H}_2) \] Given: - \( C_{p,m}^\circ(\text{CH}_3\text{OH}) = 44 \, \text{J K}^{-1} \text{mol}^{-1} \) - \( C_{p,m}^\circ(\text{CO}) = 29.4 \, \text{J K}^{-1} \text{mol}^{-1} \) - \( C_{p,m}^\circ(\text{H}_2) = 28.8 \, \text{J K}^{-1} \text{mol}^{-1} \) Substituting the values: \[ \Delta_r C_p^\circ = 44 - 29.4 - 2 \cdot 28.8 \] \[ \Delta_r C_p^\circ = 44 - 29.4 - 57.6 \] \[ \Delta_r C_p^\circ = 44 - 87 = -43 \, \text{J K}^{-1} \text{mol}^{-1} \] ### Step 3: Calculate \( \Delta_r S^\circ \) at 320 K Using the formula for the change in entropy with temperature: \[ \Delta_r S^\circ_{320} - \Delta_r S^\circ_{300} = \Delta_r C_p^\circ \cdot \ln\left(\frac{T_2}{T_1}\right) \] Where \( T_1 = 300 \, \text{K} \) and \( T_2 = 320 \, \text{K} \): Substituting the values: \[ \Delta_r S^\circ_{320} - (-16) = -43 \cdot \ln\left(\frac{320}{300}\right) \] Given \( \ln\left(\frac{320}{300}\right) = 0.06 \): \[ \Delta_r S^\circ_{320} + 16 = -43 \cdot 0.06 \] \[ \Delta_r S^\circ_{320} + 16 = -2.58 \] \[ \Delta_r S^\circ_{320} = -2.58 - 16 \] \[ \Delta_r S^\circ_{320} = -18.58 \, \text{J K}^{-1} \text{mol}^{-1} \] ### Final Answer Thus, the change in standard entropy \( \Delta_r S^\circ \) at 320 K is: \[ \Delta_r S^\circ_{320} = -18.58 \, \text{J K}^{-1} \text{mol}^{-1} \] ---

To calculate the change in standard entropy (\( \Delta_r S^\circ \)) at 320 K for the reaction \( \text{CO(g)} + 2\text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) \), we will follow these steps: ### Step 1: Calculate \( \Delta_r S^\circ \) at 300 K The standard entropy change for the reaction at 300 K can be calculated using the formula: \[ \Delta_r S^\circ_{300} = S^\circ(\text{CH}_3\text{OH}) - S^\circ(\text{CO}) - 2 \cdot S^\circ(\text{H}_2) ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    NARENDRA AWASTHI ENGLISH|Exercise Level 2|40 Videos
  • STOICHIOMETRY

    NARENDRA AWASTHI ENGLISH|Exercise Match the Colum-II|6 Videos

Similar Questions

Explore conceptually related problems

Standard Gibb's energy of reaction (Delta_(r )G^(@)) at a certain temperature can be computed Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r )S^(@) and the change in the value of Delta_(r)H^(@) and Delta_(r)S^(@) for a reaction with temperature can be computed as follows : Delta_(r )H_(T_(2))^(@)-Delta_(r )H_(T_(1))^(@)=Delta_(r )C_(p)^(@)(T_(2)-T_(1)) Delta_(r )S_(T_(2))^(@)-Delta_(r )S_(T_(1))^(@)=Delta_(r )C_(p)^(@)ln.(T_(2)/T_(1)) " "Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r)S^(@) and " by "Delta_(r )G^(@)=-"RT " ln K_(eq) . Consider the following reaction : CO(g)+2H_(2)(g)iffCH_(3)OH(g) Given : Delta_(f)H^(@)(CH_(3)OH,g)=-201 " kJ"//"mol", " "Delta_(f)H^(@)(CO,g)=-114" kJ"//"mol" S^(@)(CH_(3)OH,g)=240" J"//"K-mol, "S^(@)(H_(2),g)=29" JK"^(-1)" mol"^(-1) S^(@)(CO,g)=198 " J"//"mol-K, "C_(p,m)^(@)(H_(2))=28.8 " J"//"mol-K" C_(p,m)^(@)(CO)=29.4 " J"//"mol-K, "C_(p,m)^(@)(CH_(3)OH)=44 " J"//"mol-K" and " "ln ((320)/(300))=0.06 , all data at 300 K Delta_(r )H^(@) at 300 K for the reaction is :

Consider the following reaction at temperature T : CH_(2)=CH_(2)(g) +Cl_(2)(g)rarrClCH_(2)CH_(2)Cl(g) Delta_(r ) H^(@)=-217.5kJ//"mol, " Delta_(r )S^(@)=-233.9J//K-"mol" Reaction is supported by :

Which quantity out of Delta_(r)G " and " Delta_(r) G^(Θ) will be zero at equilibrium ?

Calculate Delta_(r)S_("sys")^(@) for the following reaction at 373 K: CO(g) + H_(2)O(g) to CO_(2)(g) + H_(2)(g) Delta_(r)H^(@) = -4.1 xx 10^(4) J, Delta_(r)S^(@)("unv") = 56 J//K

If enthalpy of overall reaction XrarrY along one route is Delta_(r)H and Delta_(r)H_(1),Delta_(r)H_(2),Delta_(r)H_(3) …. Representing enthalpies of reactions leading to same product Y then Delta_(r)H is

The Delta_(r )H^@ (enthalpy of formation) is positive in :

Variation of equilibrium constan K with temperature is given by van't Hoff equation InK=(Delta_(r)S^(@))/R-(Delta_(r)H^(@))/(RT) for this equation, (Delta_(r)H^(@)) can be evaluated if equilibrium constans K_(1) and K_(2) at two temperature T_(1) and T_(2) are known. log(K_(2)/K_(1))=(Delta_(r)H^(@))/(2.303R)[1/T_(1)-1/T_(2)] Select the correct statement :

If Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))| , then the value of sum_(r=1)^(n) Delta_(r) is

If Delta_(r)=|{:(r,r-1),(r-1,r):}| where is a natural number, the value of root(10)(sum_(r=1)^(1024))Delta_(r) is

Calculate Delta_(r)G^(@) for (NH_(4)Cl,s) at 310K. Given : Delta_(r)H^(@)(NH_(4)Cl,s) =-314 kj/mol, Delta_(r)C_(p)=0 S_(N_(2)(g))^(@)=192 JK^(-1mol^(-1)),S_(H_(2)(g))^(@)=130.5JK^(-1)mol^(-1), S_(Cl_(2)(g))^(@)=233JK mol^(-1), S_(NH_(4)Cl(s))^(@)=99.5JK^(-1)mol^(-1) All given data at 300K

NARENDRA AWASTHI ENGLISH-THERMODYNAMICS-Level 3
  1. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  2. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  3. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  4. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  5. Consider the following reaction : CO(g)+2H(2)(g)iffCH(3)OH(g) Give...

    Text Solution

    |

  6. Enthalpy of neutralization is defined as the enthalpy change when 1 mo...

    Text Solution

    |

  7. Enthalpy of neutralzation is defined as the enthalpy change when 1 mol...

    Text Solution

    |

  8. Enthalpy of neutralzation is defined as the enthalpy change when 1 mol...

    Text Solution

    |

  9. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  10. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  11. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  12. Identify the intensive quantities from the following : (a)Enthalpy ...

    Text Solution

    |

  13. Identify the extensive quantities from the following :

    Text Solution

    |

  14. Identify the state functions from the following :

    Text Solution

    |

  15. Which of the following statementl is/are correct as per IUPAC sign con...

    Text Solution

    |

  16. In an isothermal irreversible expansion of an ideal gas as per IUPAC s...

    Text Solution

    |

  17. In reversible isothermal expansion of an ideal gas :

    Text Solution

    |

  18. An adiabatic process is that process in which : a.energy is transfer...

    Text Solution

    |

  19. In adiabatic process, the work involved during expansion or compressio...

    Text Solution

    |

  20. One mole of an ideal gas is subjected to a two step reversible process...

    Text Solution

    |