Home
Class 11
CHEMISTRY
Consider the following reaction : CO(g)...

Consider the following reaction : `CO(g)+2H_(2)(g)iffCH_(3)OH(g)`
Given : `Delta_(f)H^(@)(CH_(3)OH,g)=-201 " kJ"//"mol", " "Delta_(f)H^(@)(CO,g)=-114" kJ"//"mol"`
`S^(@)(CH_(3)OH,g)=240" J"//"K-mol, "S^(@)(H_(2),g)=29" JK"^(-1)" mol"^(-1)`
`S^(@)(CO,g)=198 " J"//"mol-K, "C_(p,m)^(@)(H_(2))=28.8 " J"//"mol-K"`
`C_(p,m)^(@)(CO)=29.4 " J"//"mol-K, "C_(p,m)^(@)(CH_(3)OH)=44 " J"//"mol-K"`
and `" "ln ((320)/(300))=0.06`, all data at 300 K
`Delta_(r )G^(@)` at 320 K is :

A

`-48295.2` kJ/mol

B

`240.85` kJ/mol

C

240.85 kJ/mol

D

`-81.91` kJ/mol

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard Gibbs free energy change (Δ_rG°) for the reaction at 320 K, we will follow these steps: ### Step 1: Calculate Δ_rH° at 300 K The standard enthalpy change (Δ_rH°) for the reaction can be calculated using the standard enthalpies of formation (Δ_fH°) of the reactants and products. Given: - Δ_fH°(CH₃OH, g) = -201 kJ/mol - Δ_fH°(CO, g) = -114 kJ/mol - Δ_fH°(H₂, g) = 0 kJ/mol (since it is an element in its standard state) The reaction is: \[ \text{CO(g)} + 2\text{H}_2(g) \rightarrow \text{CH}_3\text{OH}(g) \] Using the formula: \[ \Delta_rH° = \Delta_fH°(\text{products}) - \Delta_fH°(\text{reactants}) \] \[ \Delta_rH° = \Delta_fH°(CH₃OH) - [\Delta_fH°(CO) + 2 \cdot \Delta_fH°(H₂)] \] \[ \Delta_rH° = (-201) - [(-114) + 2(0)] = -201 + 114 = -87 \text{ kJ/mol} \] ### Step 2: Calculate Δ_rS° at 300 K The standard entropy change (Δ_rS°) for the reaction can be calculated using the standard entropies (S°) of the reactants and products. Given: - S°(CH₃OH, g) = 240 J/K·mol - S°(CO, g) = 198 J/K·mol - S°(H₂, g) = 29 J/K·mol Using the formula: \[ \Delta_rS° = S°(\text{products}) - S°(\text{reactants}) \] \[ \Delta_rS° = S°(CH₃OH) - [S°(CO) + 2 \cdot S°(H₂)] \] \[ \Delta_rS° = 240 - [198 + 2(29)] = 240 - [198 + 58] = 240 - 256 = -16 \text{ J/K·mol} \] ### Step 3: Calculate Δ_rS° at 320 K To find Δ_rS° at 320 K, we can use the heat capacity change (Δ_rC_p) to adjust for the temperature change. Given: - C_p,m°(CH₃OH) = 44 J/K·mol - C_p,m°(CO) = 29.4 J/K·mol - C_p,m°(H₂) = 28.8 J/K·mol Calculating Δ_rC_p: \[ \Delta_rC_p = C_p,m°(CH₃OH) - [C_p,m°(CO) + 2 \cdot C_p,m°(H₂)] \] \[ \Delta_rC_p = 44 - [29.4 + 2(28.8)] = 44 - [29.4 + 57.6] = 44 - 87 = -43 \text{ J/K·mol} \] Now, we can calculate Δ_rS° at 320 K: \[ \Delta_rS°(320) = \Delta_rS°(300) + \Delta_rC_p \cdot \Delta T \] Where ΔT = 320 K - 300 K = 20 K. \[ \Delta_rS°(320) = -16 + (-43) \cdot 20 = -16 - 860 = -876 \text{ J/K·mol} = -0.876 \text{ kJ/mol} \] ### Step 4: Calculate Δ_rH° at 320 K Using the same method as above: \[ \Delta_rH°(320) = \Delta_rH°(300) + \Delta_rC_p \cdot \Delta T \] \[ \Delta_rH°(320) = -87 + (-43) \cdot 20 = -87 - 860 = -947 \text{ J/mol} = -94.7 \text{ kJ/mol} \] ### Step 5: Calculate Δ_rG° at 320 K Using the Gibbs free energy equation: \[ \Delta_rG° = \Delta_rH° - T \Delta_rS° \] Substituting the values: \[ \Delta_rG°(320) = -94.7 - 320 \cdot (-0.876) \] \[ \Delta_rG°(320) = -94.7 + 280.32 = 185.62 \text{ kJ/mol} \] ### Final Answer: \[ \Delta_rG°(320) = -81.91 \text{ kJ/mol} \]

To calculate the standard Gibbs free energy change (Δ_rG°) for the reaction at 320 K, we will follow these steps: ### Step 1: Calculate Δ_rH° at 300 K The standard enthalpy change (Δ_rH°) for the reaction can be calculated using the standard enthalpies of formation (Δ_fH°) of the reactants and products. Given: - Δ_fH°(CH₃OH, g) = -201 kJ/mol - Δ_fH°(CO, g) = -114 kJ/mol ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    NARENDRA AWASTHI ENGLISH|Exercise Level 2|40 Videos
  • STOICHIOMETRY

    NARENDRA AWASTHI ENGLISH|Exercise Match the Colum-II|6 Videos

Similar Questions

Explore conceptually related problems

Standard Gibb's energy of reaction (Delta_(r )G^(@)) at a certain temperature can be computed Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r )S^(@) and the change in the value of Delta_(r)H^(@) and Delta_(r)S^(@) for a reaction with temperature can be computed as follows : Delta_(r )H_(T_(2))^(@)-Delta_(r )H_(T_(1))^(@)=Delta_(r )C_(p)^(@)(T_(2)-T_(1)) Delta_(r )S_(T_(2))^(@)-Delta_(r )S_(T_(1))^(@)=Delta_(r )C_(p)^(@)ln.(T_(2)/T_(1)) " "Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r)S^(@) and " by "Delta_(r )G^(@)=-"RT " ln K_(eq) . Consider the following reaction : CO(g)+2H_(2)(g)iffCH_(3)OH(g) Given : Delta_(f)H^(@)(CH_(3)OH,g)=-201 " kJ"//"mol", " "Delta_(f)H^(@)(CO,g)=-114" kJ"//"mol" S^(@)(CH_(3)OH,g)=240" J"//"K-mol, "S^(@)(H_(2),g)=29" JK"^(-1)" mol"^(-1) S^(@)(CO,g)=198 " J"//"mol-K, "C_(p,m)^(@)(H_(2))=28.8 " J"//"mol-K" C_(p,m)^(@)(CO)=29.4 " J"//"mol-K, "C_(p,m)^(@)(CH_(3)OH)=44 " J"//"mol-K" and " "ln ((320)/(300))=0.06 , all data at 300 K Delta_(r )H^(@) at 300 K for the reaction is :

Standard Gibb's energy of reaction (Delta_(r )G^(@)) at a certain temperature can be computed Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r )S^(@) and the change in the value of Delta_(r)H^(@) and Delta_(r)S^(@) for a reaction with temperature can be computed as follows : Delta_(r )H_(T_(2))^(@)-Delta_(r )H_(T_(1))^(@)=Delta_(r )C_(p)^(@)(T_(2)-T_(1)) Delta_(r )S_(T_(2))^(@)-Delta_(r )S_(T_(1))^(@)=Delta_(r )C_(p)^(@)ln.(T_(2)/T_(1)) " "Delta_(r )G^(@)=Delta_(r)H^(@)-T.Delta_(r)S^(@) and " by "Delta_(r )G^(@)=-"RT " ln K_(eq) . Consider the following reaction : CO(g)+2H_(2)(g)iffCH_(3)OH(g) Given : Delta_(f)H^(@)(CH_(3)OH,g)=-201 " kJ"//"mol", " "Delta_(f)H^(@)(CO,g)=-114" kJ"//"mol" S^(@)(CH_(3)OH,g)=240" J"//"K-mol, "S^(@)(H_(2),g)=29" JK"^(-1)" mol"^(-1) S^(@)(CO,g)=198 " J"//"mol-K, "C_(p,m)^(@)(H_(2))=28.8 " J"//"mol-K" C_(p,m)^(@)(CO)=29.4 " J"//"mol-K, "C_(p,m)^(@)(CH_(3)OH)=44 " J"//"mol-K" and " "ln ((320)/(300))=0.06 , all data at 300 K Delta_(r )S^(@) at 300 K for the reaction is :

Consider the following reaction at temperature T : CH_(2)=CH_(2)(g) +Cl_(2)(g)rarrClCH_(2)CH_(2)Cl(g) Delta_(r ) H^(@)=-217.5kJ//"mol, " Delta_(r )S^(@)=-233.9J//K-"mol" Reaction is supported by :

DeltaG° for the following reaction: I_2(s) + H_2S(g) rarr 2HI(g) + S(s) at 298 K is, Given that Delta_fG°HI(g) = 1.8 kJ mol^-1 . Delta_fG°H_2S(g) = 33.8 kJ mol^-1 .

Determine the enthalpy of formation of B_(2)H_(6) (g) in kJ/mol of the following reaction : B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(3)(s)+3H_(2)O(g) , Given : Delta_(r )H^(@)=-1941 " kJ"//"mol", " "DeltaH_(f)^(@)(B_(2)O_(3),s)=-1273" kJ"//"mol," DeltaH_(f)^(@)(H_(2)O,g)=-241.8 " kJ"//"mol"

Determine C-C and C-H bond enthalpy (in kJ//mol ) Given : Delta_(f)H^(@)(C_(2)H_(6),g)=-85kJ//mol," "Delta_(f)H^(@)(C_(3)H_(8),g)=-104kJ//mol Delta_("sub")H^(@)(C,s)=718kJ//mol," "B.E.(H-H)=436kJ//mol

What is the normal boiling point of mercury? Given : DeltaH _(f)^(@)(Hg,l)=0,S^(@)(Hg,l)=77.4 J//K-"mol" DeltaH _(f)^(@)(Hg,g)= 60.8 kJ//"mol", S^(@)(Hg, g)=174.4 J//K-"mol"

Calculated the equilibrium constant for the following reaction at 298K : 2H_(2)O(l) rarr 2H_(2)(g) +O_(2)(g) Delta_(f)G^(Theta) (H_(2)O) =- 237.2 kJ mol^(-1),R = 8.314 J mol^(-1) K^(-1)

Calculate Delta_(r)S_("sys")^(@) for the following reaction at 373 K: CO(g) + H_(2)O(g) to CO_(2)(g) + H_(2)(g) Delta_(r)H^(@) = -4.1 xx 10^(4) J, Delta_(r)S^(@)("unv") = 56 J//K

Calcualate Delta_(f)G^(@) "for" (NH_(4)Cl,s) at 310 K. Given : Delta_(f)H^(@)(NH_(4)Cl,s)=-314.5 KJ//"mol," "Delta_(r)C_(p)=0 S_(N_(2)(g))^(@)=192 JK^(-1), " "S_(H_(2)(g))^(@)=130.5 JK^(-1)mol^(-1), S_(Cl_(2))^(@)(g) =233 JK^(-1)"mol"^(-1)," "S^(@)NH_(4)Cl(s)=99.5 JK_(1)"mol"^(-1) All given data are at 300K.

NARENDRA AWASTHI ENGLISH-THERMODYNAMICS-Level 3
  1. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  2. Standard Gibb's energy of reaction (Delta(r )G^(@)) at a certain temp...

    Text Solution

    |

  3. Consider the following reaction : CO(g)+2H(2)(g)iffCH(3)OH(g) Give...

    Text Solution

    |

  4. Enthalpy of neutralization is defined as the enthalpy change when 1 mo...

    Text Solution

    |

  5. Enthalpy of neutralzation is defined as the enthalpy change when 1 mol...

    Text Solution

    |

  6. Enthalpy of neutralzation is defined as the enthalpy change when 1 mol...

    Text Solution

    |

  7. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  8. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  9. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy...

    Text Solution

    |

  10. Identify the intensive quantities from the following : (a)Enthalpy ...

    Text Solution

    |

  11. Identify the extensive quantities from the following :

    Text Solution

    |

  12. Identify the state functions from the following :

    Text Solution

    |

  13. Which of the following statementl is/are correct as per IUPAC sign con...

    Text Solution

    |

  14. In an isothermal irreversible expansion of an ideal gas as per IUPAC s...

    Text Solution

    |

  15. In reversible isothermal expansion of an ideal gas :

    Text Solution

    |

  16. An adiabatic process is that process in which : a.energy is transfer...

    Text Solution

    |

  17. In adiabatic process, the work involved during expansion or compressio...

    Text Solution

    |

  18. One mole of an ideal gas is subjected to a two step reversible process...

    Text Solution

    |

  19. Assume ideal gas behaviour for all the gases considered and neglect vi...

    Text Solution

    |

  20. Which of the following is/are correct?

    Text Solution

    |