Home
Class 11
CHEMISTRY
The van der Waals' constantes for a gas ...

The van der Waals' constantes for a gas are `a=3.6 atmL^(2)mol^(-2),b=0.6Lmol^(-1)` .If `R=0.08LatmK^(-1)mol^(-1)` and the Boyle's temperature (K) is `T_(B)` of this gas, then what is the value of `(T_(B))/(15)`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the Boyle's temperature \( T_B \) of the gas using the given van der Waals constants \( a \) and \( b \), and then calculate the value of \( \frac{T_B}{15} \). ### Step-by-Step Solution 1. **Identify the formula for Boyle's temperature**: The Boyle's temperature \( T_B \) can be calculated using the formula: \[ T_B = \frac{a}{Rb} \] where \( a \) is the van der Waals constant for attraction, \( R \) is the ideal gas constant, and \( b \) is the van der Waals constant for volume. 2. **Substitute the given values**: We are given: - \( a = 3.6 \, \text{atm L}^2 \text{mol}^{-2} \) - \( b = 0.6 \, \text{L mol}^{-1} \) - \( R = 0.08 \, \text{L atm K}^{-1} \text{mol}^{-1} \) Now substituting these values into the formula: \[ T_B = \frac{3.6 \, \text{atm L}^2 \text{mol}^{-2}}{(0.08 \, \text{L atm K}^{-1} \text{mol}^{-1})(0.6 \, \text{L mol}^{-1})} \] 3. **Calculate the denominator**: First, calculate \( Rb \): \[ Rb = 0.08 \, \text{L atm K}^{-1} \text{mol}^{-1} \times 0.6 \, \text{L mol}^{-1} = 0.048 \, \text{atm K}^{-1} \] 4. **Calculate \( T_B \)**: Now substitute \( Rb \) back into the equation for \( T_B \): \[ T_B = \frac{3.6 \, \text{atm L}^2 \text{mol}^{-2}}{0.048 \, \text{atm K}^{-1}} \] The units of atm cancel out: \[ T_B = \frac{3.6}{0.048} \, K \] 5. **Perform the division**: \[ T_B = 75 \, K \] 6. **Calculate \( \frac{T_B}{15} \)**: Finally, we need to find \( \frac{T_B}{15} \): \[ \frac{T_B}{15} = \frac{75 \, K}{15} = 5 \, K \] ### Final Answer Thus, the value of \( \frac{T_B}{15} \) is \( 5 \, K \).

To solve the problem, we need to find the Boyle's temperature \( T_B \) of the gas using the given van der Waals constants \( a \) and \( b \), and then calculate the value of \( \frac{T_B}{15} \). ### Step-by-Step Solution 1. **Identify the formula for Boyle's temperature**: The Boyle's temperature \( T_B \) can be calculated using the formula: \[ T_B = \frac{a}{Rb} ...
Promotional Banner

Topper's Solved these Questions

  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Assertion-ReasonType Questions|16 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|14 Videos
  • IONIC EEQUILIBRIUM

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|1 Videos

Similar Questions

Explore conceptually related problems

The van der Waals constants for a substance are a=300.003 kPa dm^(6)mol^(-2) and b=40.8 cm^(3) mol^(-1) . Find the critical constants of this substance.

The vander waals constant for HCI are a = 371.843 Kpa.dm^(6)mol^(-1) and b = 40.8 cm^(3) mol^(-1) find the critical constant of this substance.

The values of the van der Waals constants for a gas a = 4.10 dm^(6) "bar" mol^(-2) and b = 0.035 dm^(3) mol^(-1) . Calculate the values of the critical temperature and critical pressure for the gas.

The van der Waal's constants a & b of CO_(2) are 3.64 L^(2) mol^(-2) bar & 0.04 L mol^(-1) respectively. The value of R is 0.083 bar dm^(3)mol^(-1)K^(-1) . If one mole of CO_(2) is confined to a volume of 0.15L at 300 K , then the pressure (in bar) eaxerted by the gas is :

van der Waals constant b of helium is 24 mL mol^(-1) . Find molecular diameter of helium.

The van der Waals constant b of Ar is 3.22xx10^(-5) m^(3) mol^(-1) . Calculate the molecular diameter of Ar .

The van der Waals constant ‘b’ for oxygen is 0.0318 L mol^(-1) . Calculate the diameter of the oxygen molecule.

The van der Waals constants for CO_(2) are a = 0.37 N- m^(4) //m o l^(2) and b = 43 xx 10^(-6) m^(3) // m o l . What is the pressure exerted by the gas at 0^(@)C , for a specific volume of 0.55 litre // mole, assuming Van der Waals equation to be strictly true? Also calculate the pressure under the same condition, assuming CO_(2) as an ideal gas.

The values of a and b for oxygen are a = 1.360 atm litre^(2) mol^(-2) and b = 0.03183 litre//mol . (i) Calculate the value of (b-(a)/(RT)) at 0^(@)C . (ii) Calcualte the Boyles temperature at which (b-(a)/(RT)) = 0 .

What is the value of b (van der Waals constant) if the diameter of a molecule is 2.0 A