Home
Class 12
MATHS
The vectors vec a and vec b are not...

The vectors ` vec a` and ` vec b` are not perpendicular and ` vec c` and ` vec d` are two vectors satisfying : ` vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0` . Then the vector ` vec d` is equal to : (1) ` vec b-(( vec bdot vec c)/( vec adot vec d)) vec c` (2) ` vec c+(( vec adot vec c)/( vec adot vec b)) vec b` (3) ` vec b+(( vec bdot vec c)/( vec adot vec b)) vec c` (4) ` vec c-(( vec adot vec c)/( vec adot vec b)) vec b`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|8 Videos

Similar Questions

Explore conceptually related problems

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If vec a is perpendicular to vec b and vec r is non-zero vector such that p vec r+( vec rdot vec a) vec b= vec c , then vec r= vec c/p-(( vec adot vec c) vec b)/(p^2) (b) vec a/p-(( vec cdot vec b) vec a)/(p^2) vec a/p-(( vec adot vec b) vec c)/(p^2) (d) vec c/(p^2)-(( vec adot vec c) vec b)/p

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec adot vec d)[ vec a vec b vec c] b. ( vec adot vec c)[ vec a vec b vec d] c. ( vec adot vec b)[ vec a vec b vec d] d. none of these

If vec a= vec b+ vec c , vec b X vecd= vec0 and vec c*vec d=0 then ( vec dx( vec ax vec d))/( vec d^2) is equal to (a) vec a (b) vec b (c) vec c (d) vec d

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec adot( vec bxx vec c))/( vec b dot( vec cxx vec a))+( vec b dot( vec cxx vec a))/( vec c dot( vec axx vec b))+( vec c dot( vec bxx vec a))/( vec a dot( vec bxx vec c))dot

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a. vec c)| vec b|^2=( vec a. vec b)( vec b.vec c)( vec c.vec a) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

( vec a+2 vec b- vec c)dot{( vec a- vec b)xx( vec a- vec b- vec c)} is equal to [ vec a\ vec b\ vec c] b. c. 2[ vec a\ vec b\ vec c] d. 3[ vec a\ vec b\ vec c]

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is vec bdot vec c= vec adot vec d b. vec adot vec b= vec c dot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec c dot vec d=0

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to | vec a|^2( vec bdot vec c) b. | vec b|^2( vec adot vec c) c. | vec c|^2( vec adot vec b) d. none of these

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)