Home
Class 12
MATHS
The domain of the function f(x)=1/(sqrt(...

The domain of the function `f(x)=1/(sqrt(|x|-x))` is:
(A) `(-oo,oo)`
(B) `(0,oo`
(C) `(-oo,""0)`
(D) `(-oo,oo)"-"{0}`

A

`(-oo,oo) ~{0}`

B

`(-oo,oo)`

C

`(0,oo)`

D

(-oo,0)`

Text Solution

AI Generated Solution

To find the domain of the function \( f(x) = \frac{1}{\sqrt{|x| - x}} \), we need to ensure that the expression inside the square root is positive, as the square root cannot be negative or zero (since it is in the denominator). ### Step 1: Analyze the expression inside the square root The expression we need to analyze is \( |x| - x \). ### Step 2: Consider two cases for \( |x| \) 1. **Case 1**: When \( x \geq 0 \) - Here, \( |x| = x \). ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|11 Videos
  • SEQUENCES AND SERIES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|10 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

If expression x^2-4cx+b^2gt0 for all x epsilon R and a^2+c^2ltab then range of the function (x+a)/(x^2+bx+c^2) is (A) (0,oo) (B) (0,oo) (C) (-oo,oo) (D) none of these

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of definition of the function f(x)="log"|x| is a. R b. (-oo,0) c. (0,oo) d. R-{0}

The interval of increase of the function f(x)=x-e^x+tan(2pi//7) is (a) (0,\ oo) (b) (-oo,\ 0) (c) (1,\ oo) (d) (-oo,\ 1)

The domain of definition of the function f(x)=sqrt(x-1)+sqrt(3-x) is a. [1,oo) b. (-oo,3) c. (1,3) d. [1,3]

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of definition of f(x)=x-3-2sqrt(x-4)-x-3+2sqrt(x-4) is a. [4,oo) b. (-oo,4] c. (4,oo) d. (-oo,4)

The domain of the following function is f(x)=(log)_2(-(log)_(1/2)(1+1/((x^(1/4)))-1) (0,1) (b) (0,1) (1,oo) (d) (1,oo)