Home
Class 12
MATHS
lim(x-pi/2) (cot x - cosx)/(pi-2x)^3 equ...

`lim_(x-pi/2) (cot x - cosx)/(pi-2x)^3` equals: (1) `1/8` (2) `1/4` (3) `1/24` (4) `1/16`

Text Solution

AI Generated Solution

To solve the limit problem \( \lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{(\pi - 2x)^3} \), we can follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} + h \) We start by substituting \( x \) with \( \frac{\pi}{2} + h \), where \( h \to 0 \) as \( x \to \frac{\pi}{2} \). \[ \lim_{h \to 0} \frac{\cot\left(\frac{\pi}{2} + h\right) - \cos\left(\frac{\pi}{2} + h\right)}{\left(\pi - 2\left(\frac{\pi}{2} + h\right)\right)^3} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos
  • MATHEMATICAL REASONING

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos

Similar Questions

Explore conceptually related problems

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals

(lim)_(xrarr0)((1-cos2x)(3+cosx)/(xtan4x)) is equal to (1) 1/2 (2) 1 (3) 2 (4) -1/4

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

The value of (lim)_(x->(3pi)/4)(1+t a n x1/3)/(1-2cos^2x) is (a) -1//2 (b.) -2//3 (c). -3//2 (d). -1//3

lim_(xrarr1) (1+cos pix)cot^2pi x is equal to

lim_(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

(lim)_(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a. (pi^2)/6 b. (3pi^2)/(16) c. (pi^2)/(16) d. -(3pi^2)/(16)

lim_(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (b) 0 (c) 2 (d) none of these

lim_(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1) is equal to