`A_(1)` and `A_(2)` are two vectors such that `|A_(1)| = 3 , |A_(2)| = 5` and `|A_(1)+A_(2)| = 5` the value of `(2A_(1)+3A_(2)).(2A_(1)-2A_(2))` is
A
`(237)/(2)`
B
`-123`
C
`(-337)/(2)`
D
`(337)/(2)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of the expression \((2A_1 + 3A_2) \cdot (2A_1 - 2A_2)\).
### Step-by-step Solution:
1. **Understanding the Dot Product**:
The dot product of two vectors \( \mathbf{u} \) and \( \mathbf{v} \) is given by:
\[
\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)
\]
where \( \theta \) is the angle between the two vectors.
2. **Expanding the Expression**:
We can expand the expression using the distributive property of the dot product:
\[
(2A_1 + 3A_2) \cdot (2A_1 - 2A_2) = 2A_1 \cdot 2A_1 + 2A_1 \cdot (-2A_2) + 3A_2 \cdot 2A_1 + 3A_2 \cdot (-2A_2)
\]
This simplifies to:
\[
4A_1 \cdot A_1 - 4A_1 \cdot A_2 + 6A_2 \cdot A_1 - 6A_2 \cdot A_2
\]
3. **Combining Like Terms**:
We can combine the terms:
\[
4|A_1|^2 + (6 - 4)A_1 \cdot A_2 - 6|A_2|^2
\]
This simplifies to:
\[
4|A_1|^2 + 2A_1 \cdot A_2 - 6|A_2|^2
\]
4. **Substituting Known Values**:
We know:
- \( |A_1| = 3 \) so \( |A_1|^2 = 9 \)
- \( |A_2| = 5 \) so \( |A_2|^2 = 25 \)
- We need to find \( A_1 \cdot A_2 \).
5. **Finding \( A_1 \cdot A_2 \)**:
From the given information, we know:
\[
|A_1 + A_2| = 5
\]
Using the formula for the magnitude of the sum of two vectors:
\[
|A_1 + A_2|^2 = |A_1|^2 + |A_2|^2 + 2A_1 \cdot A_2
\]
Substituting the known values:
\[
5^2 = 9 + 25 + 2A_1 \cdot A_2
\]
This gives:
\[
25 = 34 + 2A_1 \cdot A_2
\]
Rearranging gives:
\[
2A_1 \cdot A_2 = 25 - 34 = -9 \quad \Rightarrow \quad A_1 \cdot A_2 = -\frac{9}{2}
\]
6. **Substituting Back**:
Now substituting back into our expression:
\[
4(9) + 2\left(-\frac{9}{2}\right) - 6(25)
\]
This simplifies to:
\[
36 - 9 - 150 = 36 - 159 = -123
\]
### Final Answer:
The value of \((2A_1 + 3A_2) \cdot (2A_1 - 2A_2)\) is \(-123\).
Topper's Solved these Questions
JEE MAINS
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
JEE MAIN
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
JEE MAINS 2020
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos
Similar Questions
Explore conceptually related problems
If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is
If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .
If a_(1) and a_(2) are two non- collinear unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is
If A_(1),A_(2) are between two numbers, then (A_(1)+A_(2))/(H_(1)+H_(2)) is equal to
If a_(1),a_(2),a_(3),………. are in A.P. such that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225, then a_(1) + a_(2) + a_(3) + …… a_(23) + a_(24) =
If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is
If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :
If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is
If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to
If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in
JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-Chemistry