Home
Class 12
PHYSICS
A(1) and A(2) are two vectors such that ...

`A_(1)` and `A_(2)` are two vectors such that `|A_(1)| = 3 , |A_(2)| = 5` and `|A_(1)+A_(2)| = 5` the value of `(2A_(1)+3A_(2)).(2A_(1)-2A_(2))` is

A

`(237)/(2)`

B

`-123`

C

`(-337)/(2)`

D

`(337)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((2A_1 + 3A_2) \cdot (2A_1 - 2A_2)\). ### Step-by-step Solution: 1. **Understanding the Dot Product**: The dot product of two vectors \( \mathbf{u} \) and \( \mathbf{v} \) is given by: \[ \mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta) \] where \( \theta \) is the angle between the two vectors. 2. **Expanding the Expression**: We can expand the expression using the distributive property of the dot product: \[ (2A_1 + 3A_2) \cdot (2A_1 - 2A_2) = 2A_1 \cdot 2A_1 + 2A_1 \cdot (-2A_2) + 3A_2 \cdot 2A_1 + 3A_2 \cdot (-2A_2) \] This simplifies to: \[ 4A_1 \cdot A_1 - 4A_1 \cdot A_2 + 6A_2 \cdot A_1 - 6A_2 \cdot A_2 \] 3. **Combining Like Terms**: We can combine the terms: \[ 4|A_1|^2 + (6 - 4)A_1 \cdot A_2 - 6|A_2|^2 \] This simplifies to: \[ 4|A_1|^2 + 2A_1 \cdot A_2 - 6|A_2|^2 \] 4. **Substituting Known Values**: We know: - \( |A_1| = 3 \) so \( |A_1|^2 = 9 \) - \( |A_2| = 5 \) so \( |A_2|^2 = 25 \) - We need to find \( A_1 \cdot A_2 \). 5. **Finding \( A_1 \cdot A_2 \)**: From the given information, we know: \[ |A_1 + A_2| = 5 \] Using the formula for the magnitude of the sum of two vectors: \[ |A_1 + A_2|^2 = |A_1|^2 + |A_2|^2 + 2A_1 \cdot A_2 \] Substituting the known values: \[ 5^2 = 9 + 25 + 2A_1 \cdot A_2 \] This gives: \[ 25 = 34 + 2A_1 \cdot A_2 \] Rearranging gives: \[ 2A_1 \cdot A_2 = 25 - 34 = -9 \quad \Rightarrow \quad A_1 \cdot A_2 = -\frac{9}{2} \] 6. **Substituting Back**: Now substituting back into our expression: \[ 4(9) + 2\left(-\frac{9}{2}\right) - 6(25) \] This simplifies to: \[ 36 - 9 - 150 = 36 - 159 = -123 \] ### Final Answer: The value of \((2A_1 + 3A_2) \cdot (2A_1 - 2A_2)\) is \(-123\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos

Similar Questions

Explore conceptually related problems

If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(1) and a_(2) are two non- collinear unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If A_(1),A_(2) are between two numbers, then (A_(1)+A_(2))/(H_(1)+H_(2)) is equal to

If a_(1),a_(2),a_(3),………. are in A.P. such that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225, then a_(1) + a_(2) + a_(3) + …… a_(23) + a_(24) =

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in