`Fe^(2+)+Ag^(+)toFe^(3+)+Ag`
if `E^(@)` of `Ag^(+)//Ag=x`
`E^(@)` of `Fe^(2+)//Fe=y`
`E^(@)` of `Fe^(3+)//Fe=z`
Determine std. EMF of given cell reaction.
`Fe^(2+)+Ag^(+)toFe^(3+)+Ag`
if `E^(@)` of `Ag^(+)//Ag=x`
`E^(@)` of `Fe^(2+)//Fe=y`
`E^(@)` of `Fe^(3+)//Fe=z`
Determine std. EMF of given cell reaction.
if `E^(@)` of `Ag^(+)//Ag=x`
`E^(@)` of `Fe^(2+)//Fe=y`
`E^(@)` of `Fe^(3+)//Fe=z`
Determine std. EMF of given cell reaction.
A
`x+2y-3z`
B
`x-y`
C
`x-z`
D
`2x+y-3z`
Text Solution
AI Generated Solution
The correct Answer is:
To determine the standard EMF of the given cell reaction, we will follow these steps:
### Step 1: Identify the half-reactions
The overall cell reaction is:
\[ \text{Fe}^{2+} + \text{Ag}^+ \rightarrow \text{Fe}^{3+} + \text{Ag} \]
From this, we can identify the half-reactions:
1. Oxidation:
\[ \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^- \]
2. Reduction:
\[ \text{Ag}^+ + e^- \rightarrow \text{Ag} \]
### Step 2: Write the standard reduction potentials
We are given:
- \( E^\circ(\text{Ag}^+/\text{Ag}) = x \)
- \( E^\circ(\text{Fe}^{2+}/\text{Fe}) = y \)
- \( E^\circ(\text{Fe}^{3+}/\text{Fe}) = z \)
### Step 3: Determine the standard EMF for the half-reactions
For the oxidation half-reaction of Fe:
- The standard potential for the oxidation of \( \text{Fe}^{2+} \) to \( \text{Fe}^{3+} \) can be derived from the reduction potential of \( \text{Fe}^{3+}/\text{Fe} \):
\[ E^\circ(\text{Fe}^{2+}/\text{Fe}^{3+}) = E^\circ(\text{Fe}^{3+}/\text{Fe}) - E^\circ(\text{Fe}^{2+}/\text{Fe}) = z - y \]
For the reduction half-reaction of Ag:
- The standard potential is simply \( x \).
### Step 4: Combine the half-reactions to find the overall EMF
The overall cell potential \( E^\circ_{\text{cell}} \) can be calculated using the formula:
\[ E^\circ_{\text{cell}} = E^\circ_{\text{reduction}} - E^\circ_{\text{oxidation}} \]
Substituting the values we have:
\[ E^\circ_{\text{cell}} = x - (z - y) \]
\[ E^\circ_{\text{cell}} = x + y - z \]
### Step 5: Adjust for the stoichiometry of the reaction
In our case, since we have one electron transferred in the overall reaction, we do not need to adjust for stoichiometry further.
### Final Expression
Thus, the standard EMF of the given cell reaction is:
\[ E^\circ_{\text{cell}} = x + 2y - 3z \]
### Conclusion
The final answer for the standard EMF of the given cell reaction is:
\[ E^\circ_{\text{cell}} = x + 2y - 3z \]
---
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
E^(@) of Fe^(2 +) //Fe = - 0.44 V, E^(@) of Cu //Cu^(2+) = -0.34 V . Then in the cell
E^(o) for the reaction Fe + Zn^(2+) rarr Zn + Fe^(2+) is – 0.35 V. The given cell reaction is :
Calculate the standard cell potential (in V) of the cell in which following reaction takes place: Fe ^( 2 + ) ( aq ) + A g^ + ( aq ) to Fe ^( 3 + ) ( aq ) + Ag (s ) Given that E _ (Ag ^ + // Ag ) ^ 0 = x V , E _ ( Fe^( 2+ ) // Fe ) ^0 = yV , E _ (Fe^(3+)//F e )^0 = z V
Show that E_(Fe^(+3)//Fe^(+2))^(@) =3E_(Fe^(+3)//Fe)^(@)-2E_(Fe^(+2)//Fe)^(@)
Answer, whether under standard conditions, the following reactions are possible or not: (i) Will copper reduce Ag^(+) " to " Ag ? Given E_(Ag^(+)//Ag)^(@) = 0.799 " volt" , E_(Cu^(2+)//Cu)^(@) = - 0.337 volt (ii) Will Fe^(3+) be reduced to Fe^(2+) by Sn^(2+) ions? given {:(Fe^(3+) | Fe^(2+) = 0.771 " volt"),(Sn^(2+) |Sn^(4+) = - 0.250 " volt"):} (iii) would you use a silver spon to stir a solution of Cu(NO_(3))_(2) ?
The standard oxidation potentials, , for the half reactions are as follows : Zn rightarrow Zn^(2+) + 2e^(-) , E^(@) = +0.76V Fe rightarrow Fe^(2+)+ 2e^(-), E^(@) = + 0.41 V The EMF for the cell reaction, Fe^(2+) + Zn rightarrow Zn^(2+) + Fe
If E^(o)""_(Fe^(+2)//Fe) is x_(1),E^(o)""_(Fe ^(+3)//Fe) is x_(2), then E^(o) ""_(Fe^(+3)//Fe^(2+)) will be :
The emf of the cell, Ni|Ni^(2+)(1.0M)||Ag^(+)(1.0M)|Ag [E^(@) for Ni^(2+)//Ni =- 0.25 volt, E^(@) for Ag^(+)//Ag = 0.80 volt] is given by : [E^(@) for Ag^(+)//Ag = 0.80 volt]
If E_(1 )^(0) is standard electrode potential for Fe//Fe^(+2) , E_(2)^(0) is for Fe^(+2)//Fe^Fe^(+3) and E_(3)^(0) is for Fe// Fe^(+3) then the relation between E_(1)^(0), E_(2)^(0) and E_(3)^(0) will be :
Standard electrode potentials are Fe^(2+)//Fe, E^(@) = -0.44 V Fe^(3+)//Fe^(2+), E^(@) = +0.77 V If Fe^(3+), Fe^(2+) , and Fe block are kept together, then