Home
Class 12
CHEMISTRY
in Sc^(3+),Ti^(2+),Ti^(3+),V^(2+) increa...

in `Sc^(3+),Ti^(2+),Ti^(3+),V^(2+)` increasing order of spin only magnetic moment is:

A

`Sc^(3+)ltTi^(2+)ltTi^(3+)ltV^(2+)`

B

`Sc^(3+)ltTi^(3+)ltTi^(2+)ltV^(2+)`

C

`Ti^(2+)ltSc^(3+)ltTi^(3+)ltV^(2+)`

D

`Sc^(3+)ltTi^(2+)ltV^(2+)ltTi^(3+)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the increasing order of spin-only magnetic moment for the ions Sc^(3+), Ti^(2+), Ti^(3+), and V^(2+), we will follow these steps: ### Step 1: Determine the electronic configurations of the ions 1. **Scandium (Sc)** has the atomic number 21. Its electronic configuration is: - Sc: [Ar] 4s² 3d¹ - For Sc^(3+), we remove 3 electrons (2 from 4s and 1 from 3d): - Sc^(3+): [Ar] 4s⁰ 3d⁰ (0 unpaired electrons) 2. **Titanium (Ti)** has the atomic number 22. Its electronic configuration is: - Ti: [Ar] 4s² 3d² - For Ti^(2+), we remove 2 electrons (both from 4s): - Ti^(2+): [Ar] 4s⁰ 3d² (2 unpaired electrons) - For Ti^(3+), we remove 3 electrons (2 from 4s and 1 from 3d): - Ti^(3+): [Ar] 4s⁰ 3d¹ (1 unpaired electron) 3. **Vanadium (V)** has the atomic number 23. Its electronic configuration is: - V: [Ar] 4s² 3d³ - For V^(2+), we remove 2 electrons (both from 4s): - V^(2+): [Ar] 4s⁰ 3d³ (3 unpaired electrons) ### Step 2: Count the number of unpaired electrons - Sc^(3+): 0 unpaired electrons - Ti^(2+): 2 unpaired electrons - Ti^(3+): 1 unpaired electron - V^(2+): 3 unpaired electrons ### Step 3: Calculate the spin-only magnetic moment using the formula The formula for the spin-only magnetic moment (µ) is: \[ \mu = \sqrt{n(n + 2)} \] where \( n \) is the number of unpaired electrons. 1. **Sc^(3+)**: - \( n = 0 \) - \( \mu = \sqrt{0(0 + 2)} = 0 \) 2. **Ti^(2+)**: - \( n = 2 \) - \( \mu = \sqrt{2(2 + 2)} = \sqrt{8} = 2.83 \) 3. **Ti^(3+)**: - \( n = 1 \) - \( \mu = \sqrt{1(1 + 2)} = \sqrt{3} = 1.73 \) 4. **V^(2+)**: - \( n = 3 \) - \( \mu = \sqrt{3(3 + 2)} = \sqrt{15} = 3.87 \) ### Step 4: Arrange the ions in increasing order of spin-only magnetic moment - Sc^(3+): 0 - Ti^(3+): 1.73 - Ti^(2+): 2.83 - V^(2+): 3.87 Thus, the increasing order of spin-only magnetic moment is: \[ \text{Sc}^{3+} < \text{Ti}^{3+} < \text{Ti}^{2+} < \text{V}^{2+} \] ### Final Answer The increasing order of spin-only magnetic moment is: **Sc^(3+) < Ti^(3+) < Ti^(2+) < V^(2+)**
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise QUESTION|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise CHEMISTRY|146 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise CHEMSITRY|23 Videos

Similar Questions

Explore conceptually related problems

The species with spin only magnetic moment of sqrt(24) BM is:

The calculated spin only magnetic moment of Cr^2+ ion is:

Spin only magnetic moment of [PtCl_4]^(2-) is

Assertion: The spin only magnetic moment of Sc^(3+) is 1.73 BM. Reason: The spin only magnetic momentum in (BM) is equal to sqrt(n(n+2)) .

The spin only magnetic moment value of Cr(CO)_(6) is

(i) [Co ( H_(2) O)_(6) ]^(n-6) (ii) [PtCl_(2) BrF]^(2-) m geometrical isomers The spin only magnetic moment of complex (i) is 3.87 . The value of m +n is

Which of the following ions show higher spin only magnetic moment value?

(i) On the basis of the standard electrode potential values stated for acid solutions, predict whether Ti^(4+) species may be used to oxidise Fe(II) to Fe(III) {:(Ti^(4+) + e^(-) to Ti^(3+), E^(@) = +0.01V), (Fe^(3+) + e^(-) to Fe^(2+), E^(@)= +0.77V):} (ii) Based on the data arrange Fe^(3+), Mn^(2+) " and " Cr^(2+) in the increasing order of stability of +2 oxidation state. (Give a brief reason) E_(Cr^(3+)//Cr^(2+))^(@) = -0.4V E_(Mn^(3+)//Mn^(2+))^(@) = +1.5V E_(Fe^(3+)//Fe^(2+))^(@) = +0.8V

Consider the follwing complexes ion P,Q and R P =[FeF_(6)]^(3-), Q=[V(H_(2)O)_(6)]^(2+) and R=[Fe(H_(2)O)_(6)]^(2+) The correct order of the complex ions, according to their spin only magnetic moment values (inBM) is .

[PdFClBrI]^(2-) Number of Geometrical Isomers = n. For [Fe(CN)_6]^(n-6) , Determine the spin only magnetic moment and CFSE (Ignore the pairing energy)