Home
Class 12
MATHS
"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"...

`"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C`,where, C is a constant of integration, then

A

`A=(1)/(54),f(x)=3(x-1)`

B

`A=(1)/(54),f(x)=9(x-1)^(2)`

C

`A=(1)/(27),f(x)=9(x-1)^(2)`

D

`A=(1)/(81),f(x)=3(x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem, we need to evaluate the integral on the left-hand side and compare it with the expression on the right-hand side. Let's break down the solution step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{dx}{(x^2 - 2x + 10)^2} \] We can rewrite \(10\) as \(1 + 9\), so: \[ x^2 - 2x + 10 = (x^2 - 2x + 1) + 9 = (x - 1)^2 + 3^2 \] Thus, we have: \[ \int \frac{dx}{((x - 1)^2 + 3^2)^2} \] ### Step 2: Use Trigonometric Substitution Let \(x - 1 = 3 \tan \theta\). Then, \(dx = 3 \sec^2 \theta \, d\theta\). Substituting these into the integral gives: \[ \int \frac{3 \sec^2 \theta \, d\theta}{(3 \tan \theta)^2 + 3^2)^2} = \int \frac{3 \sec^2 \theta \, d\theta}{(9 \tan^2 \theta + 9)^2} = \int \frac{3 \sec^2 \theta \, d\theta}{9^2 (\tan^2 \theta + 1)^2} = \int \frac{3 \sec^2 \theta \, d\theta}{81 \sec^4 \theta} \] This simplifies to: \[ \frac{1}{27} \int \cos^2 \theta \, d\theta \] ### Step 3: Integrate Using the identity \(\cos^2 \theta = \frac{1 + \cos 2\theta}{2}\), we can rewrite the integral: \[ \frac{1}{27} \int \cos^2 \theta \, d\theta = \frac{1}{27} \cdot \frac{1}{2} \int (1 + \cos 2\theta) \, d\theta = \frac{1}{54} \left( \theta + \frac{1}{2} \sin 2\theta \right) + C \] ### Step 4: Substitute Back Recall that \(\theta = \tan^{-1}\left(\frac{x - 1}{3}\right)\). Thus, we have: \[ \int \frac{dx}{(x^2 - 2x + 10)^2} = \frac{1}{54} \tan^{-1}\left(\frac{x - 1}{3}\right) + \text{(some function of x)} + C \] ### Step 5: Compare with the Right-Hand Side The right-hand side of the original equation is: \[ A \tan^{-1}\left(\frac{x - 1}{3}\right) + \frac{f(x)}{x^2 - 2x + 10} + C \] From our integration, we see that: \[ A = \frac{1}{54} \] Now we need to find \(f(x)\). ### Step 6: Find \(f(x)\) From the integration, we can express the remaining part: \[ \frac{1}{54} \tan^{-1}\left(\frac{x - 1}{3}\right) + \frac{f(x)}{(x - 1)^2 + 3^2} + C \] To find \(f(x)\), we can differentiate the remaining part of the integral and compare it with the original function. After some algebraic manipulation, we find: \[ f(x) = 3(x - 1) \] ### Final Answer Thus, we have: \[ A = \frac{1}{54}, \quad f(x) = 3(x - 1) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+C (where C is the constant of integration), then the range of y=f(x) AA x in R is

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to A. ( 3 ) /( x ^ 3 ) B. - ( 1 ) / ( 2x ^ 3 ) C. - ( 1 ) / ( 2 x ^ 2 ) D. - (1 )/(6x ^ 3 )

If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)((lnx)^(3)-2)+c (where c is the constant of integration), then 9k is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. A curve f(x)=x^(3)+ax-b pass through p(1,-5) and tangent to f(x) at po...

    Text Solution

    |

  2. There are two family each having two children. If there are at least t...

    Text Solution

    |

  3. "If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)...

    Text Solution

    |

  4. A (3,0,-1),B(2,10,6) and (1,2,1) are the vertices of a triangle. M is ...

    Text Solution

    |

  5. Given a point P(0,-1,-3) and the image of P in the plane 3-y+4z-2=0 is...

    Text Solution

    |

  6. if (2sqrt(sin^(2)x-2sinx+5))/(4^(sin^(2))y)le1 then which option is co...

    Text Solution

    |

  7. Let g(x) be the inverse of an invertible function f(x) which is differ...

    Text Solution

    |

  8. if int(0)^f(x) 4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then f...

    Text Solution

    |

  9. If [-sintheta]y=0 and [cottheta]x+y=0 where [] denotes greatest intega...

    Text Solution

    |

  10. lim(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sqrt(sin^2x-x+1))

    Text Solution

    |

  11. If AcapBsubeC and AcapB≠phi. Then which of the following is incorrect ...

    Text Solution

    |

  12. Let f(x)=5-[x-2] g(x)=[x+1]+3 If maximum value of f(x) is alpha ...

    Text Solution

    |

  13. If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)...

    Text Solution

    |

  14. A circle touches x-axis at point (3,0). If it makes an intercept of 8 ...

    Text Solution

    |

  15. The sum of the squares of the length of the chords intercepted on the ...

    Text Solution

    |

  16. Let A and B be two non-null events such that AsubeB. Then, which of th...

    Text Solution

    |

  17. If alpha and beta be the roots of the equation x^(2)-2x+2=0, then the ...

    Text Solution

    |

  18. The area (in sq. units) of the region A={(x,y) inRRxxRR|0lexle3,0leyle...

    Text Solution

    |

  19. Let S(1) is set of minima and S(2) is set of maxima for the curve y=9x...

    Text Solution

    |

  20. If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)), where 0ltalpha,beta...

    Text Solution

    |